Laboratory of Experimental Clinical Chemistry, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands; Biomedical Engineering and Physics, Academic Medical Center, University of Amsterdam, Amsterdam, the Netherlands.
J Thromb Haemost. 2014 Jul;12(7):1182-92. doi: 10.1111/jth.12602. Epub 2014 Jun 19.
Enumeration of extracellular vesicles has clinical potential as a biomarker for disease. In biological samples, the smallest and largest vesicles typically differ 25-fold in size, 300,000-fold in concentration, 20,000-fold in volume, and 10,000,000-fold in scattered light. Because of this heterogeneity, the currently employed techniques detect concentrations ranging from 10(4) to 10(12) vesicles mL(-1) .
To investigate whether the large variation in the detected concentration of vesicles is caused by the minimum detectable vesicle size of five widely used techniques.
The size and concentration of vesicles and reference beads were measured with transmission electron microscopy (TEM), a conventional flow cytometer, a flow cytometer dedicated to detecting submicrometer particles, nanoparticle tracking analysis (NTA), and resistive pulse sensing (RPS).
Each technique gave a different size distribution and a different concentration for the same vesicle sample.
Differences between the detected vesicle concentrations are primarily caused by differences between the minimum detectable vesicle sizes. The minimum detectable vesicle sizes were 70-90 nm for NTA, 70-100 nm for RPS, 150-190 nm for dedicated flow cytometry, and 270-600 nm for conventional flow cytometry. TEM could detect the smallest vesicles present, albeit after adhesion on a surface. Dedicated flow cytometry was most accurate in determining the size of reference beads, but is expected to be less accurate on vesicles, owing to heterogeneity of the refractive index of vesicles. Nevertheless, dedicated flow cytometry is relatively fast and allows multiplex fluorescence detection, making it most applicable to clinical research.
细胞外囊泡的计数具有作为疾病生物标志物的临床潜力。在生物样本中,最小和最大的囊泡在尺寸上通常相差 25 倍,浓度相差 300000 倍,体积相差 20000 倍,散射光相差 10000000 倍。由于这种异质性,目前使用的技术检测到的浓度范围从 10(4)到 10(12)个囊泡 mL(-1)。
研究目前使用的五种广泛使用的技术的最小检测囊泡大小是否导致检测到的囊泡浓度的巨大差异。
使用透射电子显微镜(TEM)、传统流式细胞仪、专门用于检测亚微米颗粒的流式细胞仪、纳米颗粒跟踪分析(NTA)和电阻脉冲感应(RPS)测量囊泡和参考珠的大小和浓度。
每种技术对相同的囊泡样品都给出了不同的粒径分布和不同的浓度。
检测到的囊泡浓度之间的差异主要是由最小检测囊泡尺寸之间的差异引起的。NTA 的最小检测囊泡尺寸为 70-90nm,RPS 的最小检测囊泡尺寸为 70-100nm,专用流式细胞仪的最小检测囊泡尺寸为 150-190nm,传统流式细胞仪的最小检测囊泡尺寸为 270-600nm。TEM 可以检测到存在的最小囊泡,但前提是这些囊泡要先粘附在表面上。专用流式细胞仪在确定参考珠的尺寸方面最准确,但预计在囊泡方面的准确性较低,这是由于囊泡的折射率异质性所致。然而,专用流式细胞仪相对较快,并且允许多重荧光检测,因此最适用于临床研究。