Suppr超能文献

一种数据驱动的哺乳动物细胞周期调控数学模型。

A data-driven, mathematical model of mammalian cell cycle regulation.

作者信息

Weis Michael C, Avva Jayant, Jacobberger James W, Sreenath Sree N

机构信息

Department of Electrical Engineering and Computer Science, Case Western Reserve University, Cleveland, Ohio, United States of America.

Case Comprehensive Cancer Center, Case Western Reserve University, Cleveland, Ohio, United States of America.

出版信息

PLoS One. 2014 May 13;9(5):e97130. doi: 10.1371/journal.pone.0097130. eCollection 2014.

Abstract

Few of >150 published cell cycle modeling efforts use significant levels of data for tuning and validation. This reflects the difficultly to generate correlated quantitative data, and it points out a critical uncertainty in modeling efforts. To develop a data-driven model of cell cycle regulation, we used contiguous, dynamic measurements over two time scales (minutes and hours) calculated from static multiparametric cytometry data. The approach provided expression profiles of cyclin A2, cyclin B1, and phospho-S10-histone H3. The model was built by integrating and modifying two previously published models such that the model outputs for cyclins A and B fit cyclin expression measurements and the activation of B cyclin/Cdk1 coincided with phosphorylation of histone H3. The model depends on Cdh1-regulated cyclin degradation during G1, regulation of B cyclin/Cdk1 activity by cyclin A/Cdk via Wee1, and transcriptional control of the mitotic cyclins that reflects some of the current literature. We introduced autocatalytic transcription of E2F, E2F regulated transcription of cyclin B, Cdc20/Cdh1 mediated E2F degradation, enhanced transcription of mitotic cyclins during late S/early G2 phase, and the sustained synthesis of cyclin B during mitosis. These features produced a model with good correlation between state variable output and real measurements. Since the method of data generation is extensible, this model can be continually modified based on new correlated, quantitative data.

摘要

在已发表的150多项细胞周期建模研究中,很少有研究使用大量数据进行模型调整和验证。这反映了生成相关定量数据的困难,也指出了建模研究中的一个关键不确定性。为了建立一个数据驱动的细胞周期调控模型,我们使用了从静态多参数细胞计数数据计算得出的两个时间尺度(分钟和小时)上的连续动态测量数据。该方法提供了细胞周期蛋白A2、细胞周期蛋白B1和磷酸化S10组蛋白H3的表达谱。该模型是通过整合和修改两个先前发表的模型构建而成的,使得细胞周期蛋白A和B的模型输出与细胞周期蛋白表达测量值相匹配,并且B细胞周期蛋白/Cdk1的激活与组蛋白H3的磷酸化相一致。该模型依赖于G1期Cdh1调节的细胞周期蛋白降解、细胞周期蛋白A/Cdk通过Wee1对B细胞周期蛋白/Cdk1活性的调节,以及有丝分裂细胞周期蛋白的转录控制,这反映了当前的一些文献。我们引入了E2F的自催化转录、E2F调节的细胞周期蛋白B转录、Cdc20/Cdh1介导的E2F降解、S期末/G2期初有丝分裂细胞周期蛋白转录增强,以及有丝分裂期间细胞周期蛋白B的持续合成。这些特征产生了一个状态变量输出与实际测量值具有良好相关性的模型。由于数据生成方法是可扩展的,该模型可以根据新的相关定量数据不断修改。

相似文献

1
A data-driven, mathematical model of mammalian cell cycle regulation.
PLoS One. 2014 May 13;9(5):e97130. doi: 10.1371/journal.pone.0097130. eCollection 2014.
2
[Molecular mechanisms controlling the cell cycle: fundamental aspects and implications for oncology].
Cancer Radiother. 2001 Apr;5(2):109-29. doi: 10.1016/s1278-3218(01)00087-7.
5
Deubiquitinase USP37 is activated by CDK2 to antagonize APC(CDH1) and promote S phase entry.
Mol Cell. 2011 May 20;42(4):511-23. doi: 10.1016/j.molcel.2011.03.027.
7
Cyclin/Cdk complexes: their involvement in cell cycle progression and mitotic division.
Protoplasma. 2001;216(3-4):119-42. doi: 10.1007/BF02673865.
9
A roller coaster ride with the mitotic cyclins.
Semin Cell Dev Biol. 2005 Jun;16(3):335-42. doi: 10.1016/j.semcdb.2005.02.014.

引用本文的文献

1
2
Cell Cycle Complexity: Exploring the Structure of Persistent Subsystems in 414 Models.
Biomedicines. 2024 Oct 14;12(10):2334. doi: 10.3390/biomedicines12102334.
3
A comprehensive review of computational cell cycle models in guiding cancer treatment strategies.
NPJ Syst Biol Appl. 2024 Jul 5;10(1):71. doi: 10.1038/s41540-024-00397-7.
4
Reusable rule-based cell cycle model explains compartment-resolved dynamics of 16 observables in RPE-1 cells.
PLoS Comput Biol. 2024 Jan 8;20(1):e1011151. doi: 10.1371/journal.pcbi.1011151. eCollection 2024 Jan.
5
Development and CT image-domain validation of a computational lung lesion model for use in virtual imaging trials.
Med Phys. 2023 Jul;50(7):4366-4378. doi: 10.1002/mp.16222. Epub 2023 Jan 28.
6
Understanding the mechanisms of HPV-related carcinogenesis: Implications for cell cycle dynamics.
J Theor Biol. 2022 Nov 7;551-552:111235. doi: 10.1016/j.jtbi.2022.111235. Epub 2022 Aug 13.
9
Cell cycle proliferation decisions: the impact of single cell analyses.
FEBS J. 2017 Feb;284(3):362-375. doi: 10.1111/febs.13898. Epub 2016 Oct 5.

本文引用的文献

1
Assessing kinetics from fixed cells reveals activation of the mitotic entry network at the S/G2 transition.
Mol Cell. 2014 Mar 6;53(5):843-53. doi: 10.1016/j.molcel.2014.01.031. Epub 2014 Feb 27.
2
Dynamics extracted from fixed cells reveal feedback linking cell growth to cell cycle.
Nature. 2013 Feb 28;494(7438):480-3. doi: 10.1038/nature11897.
4
Dynamic epitope expression from static cytometry data: principles and reproducibility.
PLoS One. 2012;7(2):e30870. doi: 10.1371/journal.pone.0030870. Epub 2012 Feb 8.
5
Laser scanning cytometry of mitosis: state and stage analysis.
Methods Cell Biol. 2011;102:341-72. doi: 10.1016/B978-0-12-374912-3.00014-6.
6
Cubism and the cell cycle: the many faces of the APC/C.
Nat Rev Mol Cell Biol. 2011 Jun 2;12(7):427-38. doi: 10.1038/nrm3132.
7
CytoSys: a tool for extracting cell-cycle-related expression dynamics from static data.
Methods Mol Biol. 2011;717:171-93. doi: 10.1007/978-1-61779-024-9_10.
8
A hybrid model of mammalian cell cycle regulation.
PLoS Comput Biol. 2011 Feb 10;7(2):e1001077. doi: 10.1371/journal.pcbi.1001077.
9
APC/C(Cdc20) targets E2F1 for degradation in prometaphase.
Cell Cycle. 2010 Oct 1;9(19):3956-64. doi: 10.4161/cc.9.19.13162. Epub 2010 Oct 26.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验