Suppr超能文献

从静态细胞仪数据中动态表位表达:原理与可重复性。

Dynamic epitope expression from static cytometry data: principles and reproducibility.

机构信息

Case Comprehensive Cancer Center, Case Western Reserve University, Cleveland, Ohio, United States of America.

出版信息

PLoS One. 2012;7(2):e30870. doi: 10.1371/journal.pone.0030870. Epub 2012 Feb 8.

Abstract

BACKGROUND

An imprecise quantitative sense for the oscillating levels of proteins and their modifications, interactions, and translocations as a function of the cell cycle is fundamentally important for a cartoon/narrative understanding for how the cell cycle works. Mathematical modeling of the same cartoon/narrative models would be greatly enhanced by an open-ended methodology providing precise quantification of many proteins and their modifications, etc. Here we present methodology that fulfills these features.

METHODOLOGY

Multiparametric flow cytometry was performed on Molt4 cells to measure cyclins A2 and B1, phospho-S10-histone H3, DNA content, and light scatter (cell size). The resulting 5 dimensional data were analyzed as a series of bivariate plots to isolate the data as segments of an N-dimensional "worm" through the data space. Sequential, unidirectional regions of the data were used to assemble expression profiles for each parameter as a function of cell frequency.

RESULTS

Analysis of synthesized data in which the true values where known validated the approach. Triplicate experiments demonstrated exceptional reproducibility. Comparison of three triplicate experiments stained by two methods (single cyclin or dual cyclin measurements with common DNA and phospho-histone H3 measurements) supported the feasibility of combining an unlimited number of epitopes through this methodology. The sequential degradations of cyclin A2 followed by cyclin B1 followed by de-phosphorylation of histone H3 were precisely mapped. Finally, a two phase expression rate during interphase for each cyclin was robustly identified.

CONCLUSIONS

Very precise, correlated expression profiles for important cell cycle regulating and regulated proteins and their modifications can be produced, limited only by the number of available high-quality antibodies. These profiles can be assembled into large information libraries for calibration and validation of mathematical models.

摘要

背景

作为细胞周期如何运作的漫画/叙述理解的基础,对蛋白质及其修饰、相互作用和易位的波动水平进行不精确的定量感知对于细胞周期至关重要。同样的漫画/叙述模型的数学建模,如果有一种开放式方法提供对许多蛋白质及其修饰等的精确定量,将会得到极大的增强。在这里,我们提出了一种满足这些特征的方法。

方法

使用多参数流式细胞术测量 Molt4 细胞中的细胞周期蛋白 A2 和 B1、磷酸化 S10 组蛋白 H3、DNA 含量和光散射(细胞大小)。将得到的 5 维数据作为一系列双变量图进行分析,以将数据隔离为通过数据空间的 N 维“蠕虫”的片段。使用数据的顺序、单向区域,将每个参数的表达谱组装为细胞频率的函数。

结果

对真实值已知的合成数据的分析验证了该方法。三重复实验证明了出色的可重复性。通过两种方法(带有共同 DNA 和磷酸化组蛋白 H3 测量的单个细胞周期蛋白或双细胞周期蛋白测量)对三个重复实验的染色结果进行比较,支持通过这种方法组合无限数量的表位的可行性。细胞周期蛋白 A2 的顺序降解,随后是细胞周期蛋白 B1,随后是组蛋白 H3 的去磷酸化,都得到了精确的映射。最后,还稳健地识别了每个细胞周期蛋白在间期的两个阶段表达率。

结论

可以生成重要的细胞周期调节蛋白及其修饰物的非常精确、相关的表达谱,其数量仅受可用高质量抗体数量的限制。这些谱可以组合成大型信息库,用于数学模型的校准和验证。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/fa1f/3275612/a65093c4ca44/pone.0030870.g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验