Department of Mechanical Engineering, Vanderbilt University , Nashville, Tennessee 37212, United States.
Nano Lett. 2014 Jun 11;14(6):3510-4. doi: 10.1021/nl501090w. Epub 2014 May 28.
While the nonradiative decay of surface plasmons was once thought to be only a parasitic process that limits the performance of plasmonic devices, it has recently been shown that it can be harnessed in the form of hot electrons for use in photocatalysis, photovoltaics, and photodetectors. Unfortunately, the quantum efficiency of hot electron devices remains low due to poor electron injection and in some cases low optical absorption. Here, we demonstrate how metamaterial perfect absorbers can be used to achieve near-unity optical absorption using ultrathin plasmonic nanostructures with thicknesses of 15 nm, smaller than the hot electron diffusion length. By integrating the metamaterial with a silicon substrate, we experimentally demonstrate a broadband and omnidirectional hot electron photodetector with a photoresponsivity that is among the highest yet reported. We also show how the spectral bandwidth and polarization-sensitivity can be manipulated through engineering the geometry of the metamaterial unit cell. These perfect absorber photodetectors could open a pathway for enhancing hot electron based photovoltaic, sensing, and photocatalysis systems.
虽然表面等离激元的非辐射衰减曾经被认为只是一种限制等离子体器件性能的寄生过程,但最近的研究表明,它可以以热电子的形式被利用,用于光催化、光伏和光电探测器。不幸的是,由于电子注入不良,以及在某些情况下光吸收较低,热电子器件的量子效率仍然很低。在这里,我们展示了如何使用超薄膜状的等离子体纳米结构(厚度为 15nm,小于热电子扩散长度)来实现近 100%的光吸收,通过使用超材料完美吸收器来实现。通过将超材料与硅衬底集成,我们实验证明了具有最高报道的光响应率的宽带全向热电子光电探测器。我们还展示了如何通过工程化超材料单元结构来控制光谱带宽和偏振灵敏度。这些完美吸收器光电探测器可能为增强基于热电子的光伏、传感和光催化系统开辟一条途径。