Suppr超能文献

等离子体纳米颗粒与纳米线:传感领域的设计、制备及应用

Plasmonic Nanoparticles and Nanowires: Design, Fabrication and Application in Sensing.

作者信息

Vo-Dinh Tuan, Dhawan Anuj, Norton Stephen J, Khoury Christopher G, Wang Hsin-Neng, Misra Veena, Gerhold Michael D

机构信息

Fitzpatrick Institute for Photonics, Departments of Biomedical Engineering and Chemistry, Duke University, Durham, NC 27708, USA.

Department of Electrical and Computer Engineering, NC State University, Raleigh, NC 27606, USA.

出版信息

J Phys Chem C Nanomater Interfaces. 2010 Apr 29;114(16):7480-7488. doi: 10.1021/jp911355q.

Abstract

This study involves two aspects of our investigations of plasmonics-active systems: (i) theoretical and simulation studies and (ii) experimental fabrication of plasmonics-active nanostructures. Two types of nanostructures are selected as the model systems for their unique plasmonics properties: (1) nanoparticles and (2) nanowires on substrate. Special focus is devoted to regions where the electromagnetic field is strongly concentrated by the metallic nanostructures or between nanostructures. The theoretical investigations deal with dimers of nanoparticles and nanoshells using a semi-analytical method based on a multipole expansion (ME) and the finite-element method (FEM) in order to determine the electromagnetic enhancement, especially at the interface areas of two adjacent nanoparticles. The experimental study involves the design of plasmonics-active nanowire arrays on substrates that can provide efficient electromagnetic enhancement in regions around and between the nanostructures. Fabrication of these nanowire structures over large chip-scale areas (from a few millimeters to a few centimeters) as well as FDTD simulations to estimate the EM fields between the nanowires are described. The application of these nanowire chips using surface-enhanced Raman scattering (SERS) for detection of chemicals and labeled DNA molecules is described to illustrate the potential of the plasmonics chips for sensing.

摘要

本研究涉及我们对等离激元活性系统的两方面研究

(i)理论和模拟研究,以及(ii)等离激元活性纳米结构的实验制备。选择两种类型的纳米结构作为具有独特等离激元特性的模型系统:(1)纳米颗粒和(2)基底上的纳米线。特别关注金属纳米结构或纳米结构之间电磁场强烈集中的区域。理论研究使用基于多极展开(ME)和有限元方法(FEM)的半解析方法处理纳米颗粒二聚体和纳米壳,以确定电磁增强,特别是在两个相邻纳米颗粒的界面区域。实验研究涉及在基底上设计等离激元活性纳米线阵列,该阵列可在纳米结构周围和之间的区域提供有效的电磁增强。描述了在大芯片尺度区域(从几毫米到几厘米)上制备这些纳米线结构以及用于估计纳米线之间电磁场的FDTD模拟。描述了使用这些纳米线芯片通过表面增强拉曼散射(SERS)检测化学物质和标记DNA分子,以说明等离激元芯片在传感方面的潜力。

相似文献

1
Plasmonic Nanoparticles and Nanowires: Design, Fabrication and Application in Sensing.
J Phys Chem C Nanomater Interfaces. 2010 Apr 29;114(16):7480-7488. doi: 10.1021/jp911355q.
2
Plasmonics-based nanostructures for surface-enhanced Raman scattering bioanalysis.
Methods Mol Biol. 2005;300:255-83. doi: 10.1385/1-59259-858-7:255.
3
Plasmonic Pollen Grain Nanostructures: A Three-Dimensional Surface-Enhanced Raman Scattering (SERS)-Active Substrate.
Chem Asian J. 2021 Jul 5;16(13):1807-1819. doi: 10.1002/asia.202100386. Epub 2021 Jun 8.
4
Nanobiosensing Using Plasmonic Nanoprobes.
IEEE J Sel Top Quantum Electron. 2008 Jan;14(1):198-205. doi: 10.1109/JSTQE.2007.914738.
5
Plasmonic "nano-fingers on nanowires" as SERS substrates.
Opt Lett. 2016 May 1;41(9):2085-8. doi: 10.1364/OL.41.002085.
7
Anisotropic surface enhanced Raman scattering in nanoparticle and nanowire arrays.
Nanotechnology. 2012 Dec 7;23(48):485307. doi: 10.1088/0957-4484/23/48/485307. Epub 2012 Nov 6.
8
Highly controlled surface-enhanced Raman scattering chips using nanoengineered gold blocks.
Small. 2011 Jan 17;7(2):252-8. doi: 10.1002/smll.201001560. Epub 2010 Dec 10.
9
Plasmonic "Nanowave" Substrates for SERS: Fabrication and Numerical Analysis.
J Phys Chem C Nanomater Interfaces. 2012 Apr 5;116(13):7534-7545. doi: 10.1021/jp2120669.
10
Plasmonic substrates for surface enhanced Raman scattering.
Anal Chim Acta. 2017 Sep 1;984:19-41. doi: 10.1016/j.aca.2017.06.002. Epub 2017 Jun 20.

引用本文的文献

1
Nanoplasmonics biosensors: At the frontiers of biomedical diagnostics.
Trends Analyt Chem. 2024 Nov;180. doi: 10.1016/j.trac.2024.117973. Epub 2024 Sep 18.
3
Shining Gold Nanostars: From Cancer Diagnostics to Photothermal Treatment and Immunotherapy.
J Immunol Sci. 2018;2(1):1-8. doi: 10.29245/2578-3009/2018/1.1104. Epub 2018 Jan 2.
4
Nanoplasmonics Enabling Cancer Diagnostics and Therapy.
Cancers (Basel). 2022 Nov 22;14(23):5737. doi: 10.3390/cancers14235737.
5
Plasmonic Biosensors: Review.
Biology (Basel). 2022 Apr 19;11(5):621. doi: 10.3390/biology11050621.
6
Gold nanoisland substrates for SERS characterization of cultured cells.
Biomed Opt Express. 2019 Nov 8;10(12):6172-6188. doi: 10.1364/BOE.10.006172. eCollection 2019 Dec 1.
7
Present and Future of Surface-Enhanced Raman Scattering.
ACS Nano. 2020 Jan 28;14(1):28-117. doi: 10.1021/acsnano.9b04224. Epub 2019 Oct 8.
8
Al/Si Nanopillars as Very Sensitive SERS Substrates.
Materials (Basel). 2018 Aug 26;11(9):1534. doi: 10.3390/ma11091534.

本文引用的文献

1
Gold Nanostars For Surface-Enhanced Raman Scattering: Synthesis, Characterization and Optimization.
J Phys Chem C Nanomater Interfaces. 2008;2008(112):18849-18859. doi: 10.1021/jp8054747.
3
FIB Fabrication of Metallic Nanostructures on End-Faces of Optical Fibers for Chemical Sensing Applications.
J Vac Sci Technol B Microelectron Nanometer Struct Process Meas Phenom. 2008;26(6):2168-2173. doi: 10.1116/1.3013329.
4
Fabrication of large area nanoprism arrays and their application for surface enhanced Raman spectroscopy.
Nanotechnology. 2008 Apr 9;19(14):145302. doi: 10.1088/0957-4484/19/14/145302. Epub 2008 Mar 4.
5
Plasmonics of 3-D nanoshell dimers using multipole expansion and finite element method.
ACS Nano. 2009 Sep 22;3(9):2776-88. doi: 10.1021/nn900664j.
7
Multiplex detection of breast cancer biomarkers using plasmonic molecular sentinel nanoprobes.
Nanotechnology. 2009 Feb 11;20(6):065101. doi: 10.1088/0957-4484/20/6/065101. Epub 2009 Jan 14.
8
SERS-based plasmonic nanobiosensing in single living cells.
Anal Bioanal Chem. 2009 Feb;393(4):1135-41. doi: 10.1007/s00216-008-2521-y. Epub 2008 Dec 7.
9
Optical response of linear chains of metal nanospheres and nanospheroids.
J Opt Soc Am A Opt Image Sci Vis. 2008 Nov;25(11):2767-75. doi: 10.1364/josaa.25.002767.
10
Enhanced propagation in a plasmonic chain waveguide with nanoshell structures based on low- and high-order mode coupling.
J Opt Soc Am A Opt Image Sci Vis. 2008 Jul;25(7):1783-9. doi: 10.1364/josaa.25.001783.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验