Suppr超能文献

基于代谢组学研究评估四种不同分析工具以确定天麻和地黄的产地来源

Evaluation of four different analytical tools to determine the regional origin of Gastrodia elata and Rehmannia glutinosa on the basis of metabolomics study.

作者信息

Lee Dong-Kyu, Lim Dong Kyu, Um Jung A, Lim Chang Ju, Hong Ji Yeon, Yoon Young A, Ryu Yeonsuk, Kim Hyo Jin, Cho Hi Jae, Park Jeong Hill, Seo Young Bae, Kim Kyunga, Lim Johan, Kwon Sung Won, Lee Jeongmi

机构信息

College of Pharmacy, Seoul National University, Seoul 151-742, Korea.

School of Pharmacy, Sungkyunkwan University, Suwon 440-746, Korea.

出版信息

Molecules. 2014 May 16;19(5):6294-308. doi: 10.3390/molecules19056294.

Abstract

Chemical profiles of medicinal plants could be dissimilar depending on the cultivation environments, which may influence their therapeutic efficacy. Accordingly, the regional origin of the medicinal plants should be authenticated for correct evaluation of their medicinal and market values. Metabolomics has been found very useful for discriminating the origin of many plants. Choosing the adequate analytical tool can be an essential procedure because different chemical profiles with different detection ranges will be produced according to the choice. In this study, four analytical tools, Fourier transform near‑infrared spectroscopy (FT-NIR), 1H-nuclear magnetic resonance spectroscopy (1H‑NMR), liquid chromatography-mass spectrometry (LC-MS), and gas chromatography-mass spectroscopy (GC-MS) were applied in parallel to the same samples of two popular medicinal plants (Gastrodia elata and Rehmannia glutinosa) cultivated either in Korea or China. The classification abilities of four discriminant models for each plant were evaluated based on the misclassification rate and Q2 obtained from principal component analysis (PCA) and orthogonal projection to latent structures-discriminant analysis (OPLS‑DA), respectively. 1H-NMR and LC-MS, which were the best techniques for G. elata and R. glutinosa, respectively, were generally preferable for origin discrimination over the others. Reasoned by integrating all the results, 1H-NMR is the most prominent technique for discriminating the origins of two plants. Nonetheless, this study suggests that preliminary screening is essential to determine the most suitable analytical tool and statistical method, which will ensure the dependability of metabolomics-based discrimination.

摘要

药用植物的化学特征可能因种植环境而异,这可能会影响它们的治疗效果。因此,为了正确评估药用植物的药用价值和市场价值,需要对其产地进行鉴定。代谢组学已被证明在鉴别许多植物的产地方面非常有用。选择合适的分析工具可能是一个关键步骤,因为根据所选工具的不同,会产生具有不同检测范围的不同化学特征。在本研究中,将傅里叶变换近红外光谱(FT-NIR)、氢核磁共振光谱(1H-NMR)、液相色谱-质谱联用(LC-MS)和气相色谱-质谱联用(GC-MS)这四种分析工具同时应用于两种常见药用植物(天麻和地黄)在韩国或中国种植的相同样本。分别基于主成分分析(PCA)得到的误分类率和正交投影到潜在结构判别分析(OPLS-DA)得到的Q2,评估每种植物的四种判别模型的分类能力。1H-NMR和LC-MS分别是鉴别天麻和地黄的最佳技术,总体上比其他技术更适合用于产地鉴别。综合所有结果来看,1H-NMR是鉴别两种植物产地最突出的技术。尽管如此,本研究表明,进行初步筛选对于确定最合适的分析工具和统计方法至关重要,这将确保基于代谢组学的鉴别结果的可靠性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/dfa6/6271526/a7a9921910b3/molecules-19-06294-g002.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验