Suppr超能文献

用于血氧水平依赖性功能磁共振成像的匹配滤波器采集

Matched-filter acquisition for BOLD fMRI.

作者信息

Kasper Lars, Haeberlin Maximilian, Dietrich Benjamin E, Gross Simon, Barmet Christoph, Wilm Bertram J, Vannesjo S Johanna, Brunner David O, Ruff Christian C, Stephan Klaas E, Pruessmann Klaas P

机构信息

Institute for Biomedical Engineering, University of Zurich and ETH Zurich, Switzerland; Translational Neuromodeling Unit, Institute for Biomedical Engineering, University of Zurich and ETH Zurich, Switzerland.

Institute for Biomedical Engineering, University of Zurich and ETH Zurich, Switzerland.

出版信息

Neuroimage. 2014 Oct 15;100:145-60. doi: 10.1016/j.neuroimage.2014.05.024. Epub 2014 May 17.

Abstract

We introduce matched-filter fMRI, which improves BOLD (blood oxygen level dependent) sensitivity by variable-density image acquisition tailored to subsequent image smoothing. Image smoothing is an established post-processing technique used in the vast majority of fMRI studies. Here we show that the signal-to-noise ratio of the resulting smoothed data can be substantially increased by acquisition weighting with a weighting function that matches the k-space filter imposed by the smoothing operation. We derive the theoretical SNR advantage of this strategy and propose a practical implementation of 2D echo-planar acquisition matched to common Gaussian smoothing. To reliably perform the involved variable-speed trajectories, concurrent magnetic field monitoring with NMR probes is used. Using this technique, phantom and in vivo measurements confirm reliable SNR improvement in the order of 30% in a "resting-state" condition and prove robust in different regimes of physiological noise. Furthermore, a preliminary task-based visual fMRI experiment equally suggests a consistent BOLD sensitivity increase in terms of statistical sensitivity (average t-value increase of about 35%). In summary, our study suggests that matched-filter acquisition is an effective means of improving BOLD SNR in studies that rely on image smoothing at the post-processing level.

摘要

我们引入了匹配滤波功能磁共振成像(fMRI),它通过根据后续图像平滑处理量身定制的可变密度图像采集来提高血氧水平依赖(BOLD)信号的灵敏度。图像平滑是绝大多数fMRI研究中使用的一种既定的后处理技术。在此我们表明,通过使用与平滑操作所施加的k空间滤波器相匹配的加权函数进行采集加权,可以大幅提高所得平滑数据的信噪比。我们推导了该策略在理论上的信噪比优势,并提出了一种与常见高斯平滑相匹配的二维回波平面采集的实际实施方案。为了可靠地执行所涉及的变速轨迹,我们使用了核磁共振(NMR)探头进行并发磁场监测。使用该技术,体模和体内测量结果证实,在“静息状态”下,信噪比可可靠地提高约30%,并且在不同的生理噪声状态下都表现出稳健性。此外,一项基于任务的初步视觉fMRI实验同样表明,在统计灵敏度方面(平均t值增加约35%),BOLD信号的灵敏度也有一致的提高。总之,我们的研究表明,在依赖于后处理层面图像平滑的研究中,匹配滤波采集是提高BOLD信噪比的一种有效方法。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验