Wellcome Centre for Integrative Neuroimaging, FMRIB, Nuffield Department of Clinical Neurosciences, University of Oxford, United Kingdom.
Wellcome Centre for Integrative Neuroimaging, FMRIB, Nuffield Department of Clinical Neurosciences, University of Oxford, United Kingdom.
Neuroimage. 2018 Jul 1;174:97-110. doi: 10.1016/j.neuroimage.2018.02.062. Epub 2018 Mar 20.
Recent developments in highly accelerated fMRI data acquisition have employed low-rank and/or sparsity constraints for image reconstruction, as an alternative to conventional, time-independent parallel imaging. When under-sampling factors are high or the signals of interest are low-variance, however, functional data recovery can be poor or incomplete. We introduce a method for improving reconstruction fidelity using external constraints, like an experimental design matrix, to partially orient the estimated fMRI temporal subspace. Combining these external constraints with low-rank constraints introduces a new image reconstruction model that is analogous to using a mixture of subspace-decomposition (PCA/ICA) and regression (GLM) models in fMRI analysis. We show that this approach improves fMRI reconstruction quality in simulations and experimental data, focusing on the model problem of detecting subtle 1-s latency shifts between brain regions in a block-design task-fMRI experiment. Successful latency discrimination is shown at acceleration factors up to R = 16 in a radial-Cartesian acquisition. We show that this approach works with approximate, or not perfectly informative constraints, where the derived benefit is commensurate with the information content contained in the constraints. The proposed method extends low-rank approximation methods for under-sampled fMRI data acquisition by leveraging knowledge of expected task-based variance in the data, enabling improvements in the speed and efficiency of fMRI data acquisition without the loss of subtle features.
最近,在高度加速的 fMRI 数据采集方面的发展已经采用了低秩和/或稀疏约束来进行图像重建,作为传统的、与时间无关的并行成像的替代方法。然而,当欠采样因子较高或感兴趣的信号方差较低时,功能数据的恢复可能较差或不完整。我们引入了一种使用外部约束(如实验设计矩阵)来提高重建保真度的方法,以部分定向估计的 fMRI 时间子空间。将这些外部约束与低秩约束相结合,引入了一种新的图像重建模型,该模型类似于在 fMRI 分析中使用子空间分解(PCA/ICA)和回归(GLM)模型的混合。我们表明,这种方法可以提高模拟和实验数据中的 fMRI 重建质量,重点是在块设计任务 fMRI 实验中检测大脑区域之间微妙的 1 秒潜伏期变化的模型问题。在径向笛卡尔采集中,在加速因子高达 R=16 的情况下,成功地进行了潜伏期判别。我们表明,这种方法适用于近似或不完全信息约束的情况,其中得出的好处与约束中包含的信息量成正比。所提出的方法通过利用数据中基于任务的预期方差的知识扩展了用于欠采样 fMRI 数据采集的低秩逼近方法,在不丢失微妙特征的情况下提高了 fMRI 数据采集的速度和效率。