Suppr超能文献

结核病治疗中的治疗药物监测:更新。

Therapeutic drug monitoring in the treatment of tuberculosis: an update.

机构信息

Infectious Disease Pharmacokinetics Laboratory, College of Pharmacy and Emerging Pathogens Institute, University of Florida, 1600 SW Archer Rd., Rm P4-33, PO Box 100486, Gainesville, FL, 32610-0486, USA.

出版信息

Drugs. 2014 Jun;74(8):839-54. doi: 10.1007/s40265-014-0222-8.

Abstract

Tuberculosis (TB) is the world's second leading infectious killer. Cases of multidrug-resistant (MDR-TB) and extremely drug-resistant (XDR-TB) have increased globally. Therapeutic drug monitoring (TDM) remains a standard clinical technique for using plasma drug concentrations to determine dose. For TB patients, TDM provides objective information for the clinician to make informed dosing decisions. Some patients are slow to respond to treatment, and TDM can shorten the time to response and to treatment completion. Normal plasma concentration ranges for the TB drugs have been defined. For practical reasons, only one or two samples are collected post-dose. A 2-h post-dose sample approximates the peak serum drug concentration (Cmax) for most TB drugs. Adding a 6-h sample allows the clinician to distinguish between delayed absorption and malabsorption. TDM requires that samples are promptly centrifuged, and that the serum is promptly harvested and frozen. Isoniazid and ethionamide, in particular, are not stable in human serum at room temperature. Rifampicin is stable for more than 6 h under these conditions. Since our 2002 review, several papers regarding TB drug pharmacokinetics, pharmacodynamics, and TDM have been published. Thus, we have better information regarding the concentrations required for effective TB therapy. In vitro and animal model data clearly show concentration responses for most TB drugs. Recent studies emphasize the importance of rifamycins and pyrazinamide as sterilizing agents. A strong argument can be made for maximizing patient exposure to these drugs, short of toxicity. Further, the very concept behind 'minimal inhibitory concentration' (MIC) implies that one should achieve concentrations above the minimum in order to maximize response. Some, but not all clinical data are consistent with the utility of this approach. The low ends of the TB drug normal ranges set reasonable 'floors' above which plasma concentrations should be maintained. Patients with diabetes and those infected with HIV have a particular risk for poor drug absorption, and for drug-drug interactions. Published guidelines typically describe interactions between two drugs, whereas the clinical situation often is considerably more complex. Under 'real-life' circumstances, TDM often is the best available tool for sorting out these multi-drug interactions, and for providing the patient safe and adequate doses. Plasma concentrations cannot explain all of the variability in patient responses to TB treatment, and cannot guarantee patient outcomes. However, combined with clinical and bacteriological data, TDM can be a decisive tool, allowing clinicians to successfully treat even the most complicated TB patients.

摘要

结核病(TB)是全球第二大传染性杀手。耐多药(MDR-TB)和广泛耐药(XDR-TB)病例在全球范围内有所增加。治疗药物监测(TDM)仍然是一种使用血浆药物浓度来确定剂量的标准临床技术。对于结核病患者,TDM 为临床医生提供客观信息,以便做出明智的给药决策。一些患者对治疗反应缓慢,TDM 可以缩短反应时间和治疗完成时间。已经确定了结核病药物的正常血浆浓度范围。出于实际原因,仅采集一到两个给药后样本。给药后 2 小时的样本可近似大多数结核病药物的峰值血清药物浓度(Cmax)。增加 6 小时样本可让临床医生区分延迟吸收和吸收不良。TDM 需要及时离心样本,并及时采集和冷冻血清。异烟肼和乙硫异烟胺,特别是在室温下在人血清中不稳定。利福平在这些条件下稳定超过 6 小时。自我们 2002 年的综述以来,已经发表了几篇关于结核病药物药代动力学、药效学和 TDM 的论文。因此,我们有了更好的关于有效结核病治疗所需浓度的信息。体外和动物模型数据清楚地显示了大多数结核病药物的浓度反应。最近的研究强调了利福霉素类和吡嗪酰胺作为杀菌剂的重要性。为了最大化患者对这些药物的暴露,而又不产生毒性,可以提出强有力的论点。此外,“最小抑菌浓度”(MIC)背后的概念暗示应该达到高于最小浓度以最大化反应。一些,但不是所有的临床数据都与这种方法的实用性一致。结核病药物正常范围的低端设定了合理的“下限”,高于该下限应保持血浆浓度。患有糖尿病和感染艾滋病毒的患者特别存在药物吸收不良和药物相互作用的风险。已发布的指南通常描述两种药物之间的相互作用,而临床情况通常要复杂得多。在“现实生活”情况下,TDM 通常是解决这些多药物相互作用并为患者提供安全和适当剂量的最佳可用工具。血浆浓度不能解释患者对结核病治疗反应的所有变异性,也不能保证患者的结果。然而,结合临床和细菌学数据,TDM 可以成为一个决定性的工具,使临床医生能够成功治疗即使是最复杂的结核病患者。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验