Suppr超能文献

纵向标记物的前瞻性准确性。

Prospective accuracy for longitudinal markers.

作者信息

Zheng Yingye, Heagerty Patrick J

机构信息

Fred Hutchinson Cancer Research Center, 1100 Fairview Ave. N., M2-B500, P.O. Box 19024, Seattle, Washington 98109-1024, USA.

出版信息

Biometrics. 2007 Jun;63(2):332-41. doi: 10.1111/j.1541-0420.2006.00726.x.

Abstract

In this article we focus on appropriate statistical methods for characterizing the prognostic value of a longitudinal clinical marker. Frequently it is possible to obtain repeated measurements. If the measurement has the ability to signify a pending change in the clinical status of a patient then the marker has the potential to guide key medical decisions. Heagerty, Lumley, and Pepe (2000, Biometrics 56, 337-344) proposed characterizing the diagnostic accuracy of a marker measured at baseline by calculating receiver operating characteristic curves for cumulative disease or death incidence by time t. They considered disease status as a function of time, D(t) = 1(T<or=t), for a clinical event time T. In this article we aim to address the question of how well Y(s), a diagnostic marker measured at time s(s>or= 0, after the baseline time) can discriminate between people who become diseased and those who do not in a subsequent time interval [s, t]. We assume the disease status is derived from an observed event time T and thus interest is in individuals who transition from disease free to diseased. We seek methods that also allow the inclusion of prognostic covariates that permit patient-specific decision guidelines when forecasting a future change in health status. Our proposal is to use flexible semiparametric models to characterize the bivariate distribution of the event time and marker values at an arbitrary time s. We illustrate the new methods by analyzing a well-known data set from HIV research, the Multicenter AIDS Cohort Study data.

摘要

在本文中,我们聚焦于用于刻画纵向临床标志物预后价值的合适统计方法。通常可以获得重复测量值。如果该测量能够预示患者临床状态即将发生的变化,那么该标志物就有可能指导关键的医疗决策。希格蒂、拉姆利和佩佩(2000年,《生物统计学》56卷,337 - 344页)提出,通过计算到时间t时累积疾病或死亡发生率的受试者工作特征曲线,来刻画在基线时测量的标志物的诊断准确性。他们将疾病状态视为时间的函数,对于临床事件时间T,D(t) = 1(T≤t)。在本文中,我们旨在解决这样一个问题:在后续时间区间[s, t]内,在时间s(s≥0,在基线时间之后)测量的诊断标志物Y(s)能够在患病者和未患病者之间进行区分的程度如何。我们假设疾病状态源自观察到的事件时间T,因此我们关注的是从无病转变为患病的个体。我们寻求的方法还应允许纳入预后协变量,以便在预测健康状态的未来变化时制定针对患者的决策指南。我们的建议是使用灵活的半参数模型来刻画在任意时间s时事件时间和标志物值的二元分布。我们通过分析来自HIV研究的一个著名数据集——多中心艾滋病队列研究数据,来说明这些新方法。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验