Emura Takeshi, Michimae Hirofumi, Matsui Shigeyuki
Biostatistics Center, Kurume University, Kurume 830-0011, Japan.
Research Center for Medical and Health Data Science, The Institute of Statistical Mathematics, Tokyo 190-8562, Japan.
Entropy (Basel). 2022 Apr 22;24(5):589. doi: 10.3390/e24050589.
Clinical risk prediction formulas for cancer patients can be improved by dynamically updating the formulas by intermediate events, such as tumor progression. The increased accessibility of individual patient data (IPD) from multiple studies has motivated the development of dynamic prediction formulas accounting for between-study heterogeneity. A joint frailty-copula model for overall survival and time to tumor progression has the potential to develop a dynamic prediction formula of death from heterogenous studies. However, the process of developing, validating, and publishing the prediction formula is complex, which has not been sufficiently described in the literature. In this article, we provide a tutorial in order to build a web-based application for dynamic risk prediction for cancer patients on the basis of the R packages and . We demonstrate the proposed methods using a dataset of breast cancer patients from multiple clinical studies. Following this tutorial, we demonstrate how one can publish web applications available online, which can be manipulated by any user through a smartphone or personal computer. After learning this tutorial, developers acquire the ability to build an online web application using their own datasets.
通过中间事件(如肿瘤进展)动态更新公式,可以改进癌症患者的临床风险预测公式。来自多项研究的个体患者数据(IPD)可及性增加,推动了考虑研究间异质性的动态预测公式的开发。用于总生存期和肿瘤进展时间的联合脆弱- 连接函数模型有潜力从异质性研究中开发出死亡的动态预测公式。然而,开发、验证和发布预测公式的过程很复杂,文献中对此没有充分描述。在本文中,我们提供了一个教程,以便基于R包 和 构建一个用于癌症患者动态风险预测的基于网络的应用程序。我们使用来自多项临床研究的乳腺癌患者数据集演示了所提出的方法。按照本教程,我们演示了如何发布在线可用的网络应用程序,任何用户都可以通过智能手机或个人电脑对其进行操作。学习本教程后,开发人员能够使用自己的数据集构建在线网络应用程序。