Suppr超能文献

颅内动脉瘤搏动性作为评估破裂风险的新个体标准:生物力学与数值方法(IRRAs项目)

Intracranial aneurysmal pulsatility as a new individual criterion for rupture risk evaluation: biomechanical and numeric approach (IRRAs Project).

作者信息

Sanchez M, Ecker O, Ambard D, Jourdan F, Nicoud F, Mendez S, Lejeune J-P, Thines L, Dufour H, Brunel H, Machi P, Lobotesis K, Bonafe A, Costalat V

机构信息

From Philips Healthcare, Suresnes, France (M.S.) CNRS-LMGC Montpellier, Montpellier, France (M.S., F.J., D.A.)

CHU Montpellier Neuroradiology, Montpellier, France (O.E., P.M., A.B., V.C.).

出版信息

AJNR Am J Neuroradiol. 2014 Sep;35(9):1765-71. doi: 10.3174/ajnr.A3949. Epub 2014 May 22.

Abstract

BACKGROUND AND PURPOSE

The present study follows an experimental work based on the characterization of the biomechanical behavior of the aneurysmal wall and a numerical study where a significant difference in term of volume variation between ruptured and unruptured aneurysm was observed in a specific case. Our study was designed to highlight by means of numeric simulations the correlation between aneurysm sac pulsatility and the risk of rupture through the mechanical properties of the wall.

MATERIALS AND METHODS

In accordance with previous work suggesting a correlation between the risk of rupture and the material properties of cerebral aneurysms, 12 fluid-structure interaction computations were performed on 12 "patient-specific" cases, corresponding to typical shapes and locations of cerebral aneurysms. The variations of the aneurysmal volume during the cardiac cycle (ΔV) are compared by using wall material characteristics of either degraded or nondegraded tissues.

RESULTS

Aneurysms were located on 6 different arteries: middle cerebral artery (4), anterior cerebral artery (3), internal carotid artery (1), vertebral artery (1), ophthalmic artery (1), and basilar artery (1). Aneurysms presented different shapes (uniform or multilobulated) and diastolic volumes (from 18 to 392 mm3). The pulsatility (ΔV/V) was significantly larger for a soft aneurysmal material (average of 26%) than for a stiff material (average of 4%). The difference between ΔV, for each condition, was statistically significant: P=.005.

CONCLUSIONS

The difference in aneurysmal pulsatility as highlighted in this work might be a relevant patient-specific predictor of aneurysm risk of rupture.

摘要

背景与目的

本研究遵循一项基于动脉瘤壁生物力学行为特征的实验工作以及一项数值研究,在该数值研究的一个特定案例中观察到破裂和未破裂动脉瘤在体积变化方面存在显著差异。我们的研究旨在通过数值模拟突出动脉瘤囊搏动性与通过壁的力学性能所反映的破裂风险之间的相关性。

材料与方法

根据先前表明破裂风险与脑动脉瘤材料特性之间存在相关性的工作,对12个“患者特异性”案例进行了12次流固相互作用计算,这些案例对应于脑动脉瘤的典型形状和位置。通过使用退化或未退化组织的壁材料特性来比较心动周期中动脉瘤体积的变化(ΔV)。

结果

动脉瘤位于6条不同动脉上:大脑中动脉(4个)、大脑前动脉(3个)、颈内动脉(1个)、椎动脉(1个)、眼动脉(1个)和基底动脉(1个)。动脉瘤呈现出不同形状(均匀或多叶状)和舒张期体积(从18至392立方毫米)。柔软动脉瘤材料的搏动性(ΔV/V)(平均为26%)显著大于坚硬材料(平均为4%)。每种情况下ΔV之间的差异具有统计学意义:P = 0.005。

结论

本研究中所强调的动脉瘤搏动性差异可能是动脉瘤破裂风险的一个相关的患者特异性预测指标。

相似文献

2
Biomechanical wall properties of human intracranial aneurysms resected following surgical clipping (IRRAs Project).
J Biomech. 2011 Oct 13;44(15):2685-91. doi: 10.1016/j.jbiomech.2011.07.026. Epub 2011 Sep 14.
3
Biomechanical assessment of the individual risk of rupture of cerebral aneurysms: a proof of concept.
Ann Biomed Eng. 2013 Jan;41(1):28-40. doi: 10.1007/s10439-012-0632-2. Epub 2012 Aug 3.
4
Distinct trends of pulsatility found at the necks of ruptured and unruptured aneurysms.
J Neurointerv Surg. 2014 Mar;6(2):103-7. doi: 10.1136/neurintsurg-2013-010660. Epub 2013 Feb 15.
5
Differences in Hemodynamics and Rupture Rate of Aneurysms at the Bifurcation of the Basilar and Internal Carotid Arteries.
AJNR Am J Neuroradiol. 2017 Mar;38(3):570-576. doi: 10.3174/ajnr.A5088. Epub 2017 Feb 16.
6
Rupture limit evaluation of human cerebral aneurysms wall: Experimental study.
J Biomech. 2018 Aug 22;77:76-82. doi: 10.1016/j.jbiomech.2018.06.016. Epub 2018 Jun 23.
8
Wall shear stress on ruptured and unruptured intracranial aneurysms at the internal carotid artery.
AJNR Am J Neuroradiol. 2008 Oct;29(9):1761-7. doi: 10.3174/ajnr.A1180. Epub 2008 Jul 3.
9
Flow instability detected in ruptured versus unruptured cerebral aneurysms at the internal carotid artery.
J Biomech. 2018 Apr 27;72:187-199. doi: 10.1016/j.jbiomech.2018.03.014. Epub 2018 Mar 15.

引用本文的文献

4
Flow-splitting-based computation of outlet boundary conditions for improved cerebrovascular simulation in multiple intracranial aneurysms.
Int J Comput Assist Radiol Surg. 2019 Oct;14(10):1805-1813. doi: 10.1007/s11548-019-02036-7. Epub 2019 Jul 30.
5
Intracranial aneurysms: looking beyond size in neuroimaging: the role of anatomical factors and haemodynamics.
Quant Imaging Med Surg. 2019 Apr;9(4):537-545. doi: 10.21037/qims.2019.03.19.
6
Hemodynamics in a giant intracranial aneurysm characterized by in vitro 4D flow MRI.
PLoS One. 2018 Jan 4;13(1):e0188323. doi: 10.1371/journal.pone.0188323. eCollection 2018.
7
Fluid-Structure Simulations of a Ruptured Intracranial Aneurysm: Constant versus Patient-Specific Wall Thickness.
Comput Math Methods Med. 2016;2016:9854539. doi: 10.1155/2016/9854539. Epub 2016 Sep 18.

本文引用的文献

1
Biomechanical assessment of the individual risk of rupture of cerebral aneurysms: a proof of concept.
Ann Biomed Eng. 2013 Jan;41(1):28-40. doi: 10.1007/s10439-012-0632-2. Epub 2012 Aug 3.
2
Biomechanical wall properties of human intracranial aneurysms resected following surgical clipping (IRRAs Project).
J Biomech. 2011 Oct 13;44(15):2685-91. doi: 10.1016/j.jbiomech.2011.07.026. Epub 2011 Sep 14.
4
Numerical model of bone remodeling sensitive to loading frequency through a poroelastic behavior and internal fluid movements.
J Mech Behav Biomed Mater. 2011 Aug;4(6):849-57. doi: 10.1016/j.jmbbm.2011.03.004. Epub 2011 Mar 10.
5
Feasibility of estimating regional mechanical properties of cerebral aneurysms in vivo.
Med Phys. 2010 Apr;37(4):1689-706. doi: 10.1118/1.3355933.
6
In vitro characterisation of physiological and maximum elastic modulus of ascending thoracic aortic aneurysms using uniaxial tensile testing.
Eur J Vasc Endovasc Surg. 2010 Jun;39(6):700-7. doi: 10.1016/j.ejvs.2010.02.015. Epub 2010 Mar 25.
7
Substructuring and poroelastic modelling of the intervertebral disc.
J Biomech. 2010 May 7;43(7):1287-91. doi: 10.1016/j.jbiomech.2010.01.006. Epub 2010 Feb 18.
8
In-vivo quantification of wall motion in cerebral aneurysms from 2D cine phase contrast magnetic resonance images.
Rofo. 2010 Feb;182(2):140-50. doi: 10.1055/s-0028-1109670. Epub 2009 Oct 26.
9
Hemodynamics of Cerebral Aneurysms.
Annu Rev Fluid Mech. 2009 Jan 1;41:91-107. doi: 10.1146/annurev.fluid.40.111406.102126.
10
Mechanical behavior of annulus fibrosus: a microstructural model of fibers reorientation.
Ann Biomed Eng. 2009 Nov;37(11):2256-65. doi: 10.1007/s10439-009-9761-7. Epub 2009 Jul 17.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验