Güell Oriol, Sagués Francesc, Serrano M Ángeles
Departament de Química Física, Universitat de Barcelona, Barcelona, Spain.
Departament de Física Fonamental, Universitat de Barcelona, Barcelona, Spain.
PLoS Comput Biol. 2014 May 22;10(5):e1003637. doi: 10.1371/journal.pcbi.1003637. eCollection 2014 May.
We unravel how functional plasticity and redundancy are essential mechanisms underlying the ability to survive of metabolic networks. We perform an exhaustive computational screening of synthetic lethal reaction pairs in Escherichia coli in a minimal medium and we find that synthetic lethal pairs divide in two different groups depending on whether the synthetic lethal interaction works as a backup or as a parallel use mechanism, the first corresponding to essential plasticity and the second to essential redundancy. In E. coli, the analysis of pathways entanglement through essential redundancy supports the view that synthetic lethality affects preferentially a single function or pathway. In contrast, essential plasticity, the dominant class, tends to be inter-pathway but strongly localized and unveils Cell Envelope Biosynthesis as an essential backup for Membrane Lipid Metabolism. When comparing E. coli and Mycoplasma pneumoniae, we find that the metabolic networks of the two organisms exhibit a large difference in the relative importance of plasticity and redundancy which is consistent with the conjecture that plasticity is a sophisticated mechanism that requires a complex organization. Finally, coessential reaction pairs are explored in different environmental conditions to uncover the interplay between the two mechanisms. We find that synthetic lethal interactions and their classification in plasticity and redundancy are basically insensitive to medium composition, and are highly conserved even when the environment is enriched with nonessential compounds or overconstrained to decrease maximum biomass formation.
我们揭示了功能可塑性和冗余性是代谢网络生存能力的基本机制。我们在基本培养基中对大肠杆菌中的合成致死反应对进行了详尽的计算筛选,发现合成致死对可分为两组,这取决于合成致死相互作用是作为一种备用机制还是并行使用机制,前者对应于必需可塑性,后者对应于必需冗余性。在大肠杆菌中,通过必需冗余性对途径缠结的分析支持了这样一种观点,即合成致死性优先影响单个功能或途径。相比之下,占主导地位的必需可塑性往往是跨途径的,但具有很强的局部性,并揭示了细胞包膜生物合成是膜脂代谢的一种必需备用机制。当比较大肠杆菌和肺炎支原体时,我们发现这两种生物体的代谢网络在可塑性和冗余性的相对重要性上存在很大差异,这与可塑性是一种需要复杂组织的复杂机制这一推测一致。最后,在不同环境条件下探索了共同必需反应对,以揭示这两种机制之间的相互作用。我们发现,合成致死相互作用及其在可塑性和冗余性方面的分类基本上对培养基组成不敏感,即使环境中富含非必需化合物或受到过度限制以降低最大生物量形成时,它们也高度保守。