EMBL/CRG Systems Biology Research Unit, Centre for Genomic Regulation (CRG), Barcelona, Spain.
Mol Syst Biol. 2013;9:653. doi: 10.1038/msb.2013.6.
Mycoplasma pneumoniae, a threatening pathogen with a minimal genome, is a model organism for bacterial systems biology for which substantial experimental information is available. With the goal of understanding the complex interactions underlying its metabolism, we analyzed and characterized the metabolic network of M. pneumoniae in great detail, integrating data from different omics analyses under a range of conditions into a constraint-based model backbone. Iterating model predictions, hypothesis generation, experimental testing, and model refinement, we accurately curated the network and quantitatively explored the energy metabolism. In contrast to other bacteria, M. pneumoniae uses most of its energy for maintenance tasks instead of growth. We show that in highly linear networks the prediction of flux distributions for different growth times allows analysis of time-dependent changes, albeit using a static model. By performing an in silico knock-out study as well as analyzing flux distributions in single and double mutant phenotypes, we demonstrated that the model accurately represents the metabolism of M. pneumoniae. The experimentally validated model provides a solid basis for understanding its metabolic regulatory mechanisms.
肺炎支原体,一种具有最小基因组的威胁病原体,是细菌系统生物学的模式生物,有大量的实验信息可用。为了了解其代谢背后的复杂相互作用,我们详细分析和描述了肺炎支原体的代谢网络,将来自不同组学分析的数据在一系列条件下整合到基于约束的模型主干中。通过迭代模型预测、假设生成、实验测试和模型改进,我们准确地整理了网络,并对能量代谢进行了定量探索。与其他细菌不同,肺炎支原体将大部分能量用于维持任务而不是生长。我们表明,在高度线性的网络中,不同生长时间的通量分布预测允许分析时间依赖性变化,尽管使用的是静态模型。通过进行计算机模拟敲除研究以及分析单突变体和双突变体表型中的通量分布,我们证明了该模型准确地代表了肺炎支原体的代谢。经过实验验证的模型为理解其代谢调控机制提供了坚实的基础。