Science and Technology, Department of Molecular Biology and Genetics, Aarhus University, Forsøgsvej 1, DK-4200 Slagelse, Denmark.
Plant Methods. 2014 May 10;10:10. doi: 10.1186/1746-4811-10-10. eCollection 2014.
When creating plant transformation vectors, full control of nucleotides flanking the insert in the final construct may be desirable. Modern ligase-independent methods for DNA-recombination are based on linearization by classical type II restriction endonucleases (REs) alone or in combination with nicking enzymes leaving residual nucleotides behind in the final construct. We here explore the use of type IIS and type IIB REs for vector linearization that combined with sequence and ligase-independent cloning (SLIC) overcomes this problem and promotes seamless gene-insertion in vectors. Providing the basis for a collection of biolistic plant transformation vectors ready to be cloned with different genes-of-interest, we present two vectors, where promoter and terminator are joined by a spacer. During spacer-removal linearization (SRL), type IIS and type IIB REs remove their own recognition sequences from the vector leaving no undesired, short sequences behind.
We designed two plant transformation vectors prepared for SRL in combination with SLIC, pAUrumII and pAUrumIII, harboring a spacer with recognition sites for a type IIS and IIB RE, respectively. The gene for a green fluorescent protein, gfp, was successfully cloned into both vectors; traces of pAUrumIII, however, contaminated the transformation due to incomplete linearization, an issue not encountered with the type IIS linearized pAUrumII. Both constructs, pAUrumII-gfp and pAUrumIII-gfp, were functional, when tested in vitro on wheat and barley endosperm cells for transient gfp expression.
All nucleotides flanking an insert in a biolistic plant transformation vector can be customized by means of SRL in combination with SLIC. Especially type IIS REs promote an efficient cloning result. Based on our findings, we believe that the SRL system can be useful in a series of plant transformation vectors, favoring the presence of functional sequences for optimal expression over redundant cloning-site remnants.
在创建植物转化载体时,可能希望完全控制最终构建体中插入物侧翼的核苷酸。基于线性化的现代无连接酶 DNA 重组方法仅依赖于经典的 II 型限制性内切酶 (RE) 或与切口酶结合使用,在最终构建体中留下残留的核苷酸。我们在这里探索使用 II 型和 IIB 型 RE 进行载体线性化,与序列和无连接酶克隆 (SLIC) 相结合,可以克服这个问题,并促进载体中无缝的基因插入。为了提供一系列准备用不同感兴趣基因克隆的生物弹击植物转化载体,我们展示了两个载体,其中启动子和终止子由间隔子连接。在间隔子去除线性化 (SRL) 过程中,II 型和 IIB 型 RE 从载体中去除自身的识别序列,不会留下不需要的短序列。
我们设计了两个准备用于 SRL 与 SLIC 结合的植物转化载体,pAUrumII 和 pAUrumIII,分别携带识别 II 型和 IIB 型 RE 的间隔子。绿色荧光蛋白 (gfp) 的基因成功克隆到两个载体中;然而,由于不完全线性化,pAUrumIII 的痕迹污染了转化,而这在使用 II 型线性化的 pAUrumII 时没有遇到。在体外对小麦和大麦胚乳细胞进行瞬时 GFP 表达测试时,pAUrumII-gfp 和 pAUrumIII-gfp 两种构建体都具有功能。
通过 SRL 与 SLIC 相结合,可以定制生物弹击植物转化载体中插入物侧翼的所有核苷酸。特别是 II 型 RE 促进了高效的克隆结果。基于我们的发现,我们相信 SRL 系统在一系列植物转化载体中可能很有用,有利于存在功能序列以实现最佳表达,而不是冗余的克隆位点残留。