Madsen Claus Krogh, Hanak Tobias, Aronsson Henrik, Brinch-Pedersen Henrik
Crop Genetics and Biotechnology, AU Flakkebjerg, Department of Agroecology, Aarhus University, Forsogsvej 1 4200 Slagelse, Denmark.
Department of Biological and Environmental Sciences, University of Gothenburg, Box 461 405 30 Gothenburg, Sweden.
MethodsX. 2025 Aug 15;15:103567. doi: 10.1016/j.mex.2025.103567. eCollection 2025 Dec.
CRISPR-Cas genome editing is a powerful tool in various fields, but current cloning methods can be time-consuming due to the frequent use of intermediate entry vectors and multiple steps involving restriction enzymes and ligases. These multiple steps can create a bottleneck in CRISPR-Cas experiments. In response to this challenge, we propose a highly efficient streamlined approach, which enables simultaneous linearization of the acceptor plasmid and protospacer cloning in a single isothermal reaction. This eliminates the need for entry vectors, pre-linearization of vectors, and ligation, thus significantly simplifying the cloning process. The method can be applied to clone short synthetic oligos for single protospacer constructs or multiple amplicons for multiplex genome editing designs. Either way, researchers can proceed directly to transformation after a one-hour isothermal reaction and recover the final construct within two days. By combining the advantages of sequence-ligation independent cloning (SLIC) cloning with a streamlined workflow, our approach facilitates rapid and efficient construction of CRISPR-Cas vectors and holds the promise of accelerating research and development in genome editing and related fields. To expedite the cloning of constructs, we propose a rapid one-step CRISPR-Cas vector assembly method that combines isothermal spacer removal with a sequence-ligation-independent cloning reaction. We could show that sothermal pacer emoval inearization and equence-igation ndependent loning (ISRL-SLIC) can create single, double and triple protospacer constructs in one reaction with scalability. The ISRL-SLIC reaction delivers clones under a broad range of oligo concentration making it a robust and time saving alternative to other methods for constructing CRISPR-Cas vectors.
CRISPR-Cas基因组编辑是各个领域的强大工具,但由于频繁使用中间入门载体以及涉及限制酶和连接酶的多个步骤,当前的克隆方法可能很耗时。这些多个步骤可能会在CRISPR-Cas实验中造成瓶颈。为应对这一挑战,我们提出了一种高效的简化方法,该方法能够在单个等温反应中同时实现受体质粒的线性化和原间隔序列克隆。这消除了对入门载体、载体预线性化和连接的需求,从而显著简化了克隆过程。该方法可用于克隆用于单个原间隔序列构建体的短合成寡核苷酸或用于多重基因组编辑设计的多个扩增子。无论哪种方式,研究人员在一小时的等温反应后都可以直接进行转化,并在两天内获得最终构建体。通过将序列连接独立克隆(SLIC)的优点与简化的工作流程相结合,我们的方法有助于快速高效地构建CRISPR-Cas载体,并有望加速基因组编辑及相关领域的研发。为了加快构建体的克隆,我们提出了一种快速的一步CRISPR-Cas载体组装方法,该方法将等温间隔序列去除与序列连接独立克隆反应相结合。我们可以证明,等温间隔序列去除线性化和序列连接独立克隆(ISRL-SLIC)可以在一个反应中创建单、双和三原间隔序列构建体,具有可扩展性。ISRL-SLIC反应在广泛的寡核苷酸浓度范围内提供克隆,使其成为构建CRISPR-Cas载体的其他方法的强大且省时的替代方法。