Stracy Mathew, Uphoff Stephan, Garza de Leon Federico, Kapanidis Achillefs N
Biological Physics Research Group, Clarendon Laboratory, Department of Physics, University of Oxford, Oxford OX1 3PU, United Kingdom.
Department of Biochemistry, University of Oxford, Oxford OX1 3QU, United Kingdom; Department of Systems Biology, Harvard Medical School, Boston, MA 02138, USA.
FEBS Lett. 2014 Oct 1;588(19):3585-94. doi: 10.1016/j.febslet.2014.05.026. Epub 2014 May 23.
In vivo single-molecule experiments offer new perspectives on the behaviour of DNA binding proteins, from the molecular level to the length scale of whole bacterial cells. With technological advances in instrumentation and data analysis, fluorescence microscopy can detect single molecules in live cells, opening the doors to directly follow individual proteins binding to DNA in real time. In this review, we describe key technical considerations for implementing in vivo single-molecule fluorescence microscopy. We discuss how single-molecule tracking and quantitative super-resolution microscopy can be adapted to extract DNA binding kinetics, spatial distributions, and copy numbers of proteins, as well as stoichiometries of protein complexes. We highlight experiments which have exploited these techniques to answer important questions in the field of bacterial gene regulation and transcription, as well as chromosome replication, organisation and repair. Together, these studies demonstrate how single-molecule imaging is transforming our understanding of DNA-binding proteins in cells.
体内单分子实验为DNA结合蛋白的行为提供了新的视角,涵盖从分子水平到整个细菌细胞的长度尺度。随着仪器设备和数据分析技术的进步,荧光显微镜能够检测活细胞中的单分子,为实时直接追踪单个蛋白质与DNA的结合打开了大门。在本综述中,我们描述了实施体内单分子荧光显微镜的关键技术考量。我们讨论了如何采用单分子追踪和定量超分辨率显微镜来提取DNA结合动力学、蛋白质的空间分布和拷贝数,以及蛋白质复合物的化学计量。我们重点介绍了利用这些技术回答细菌基因调控和转录领域以及染色体复制、组织和修复方面重要问题的实验。这些研究共同证明了单分子成像如何改变我们对细胞中DNA结合蛋白的理解。