Suppr超能文献

负载抗真菌β-肽的聚合物多层膜可杀死浮游白色念珠菌,并减少柔性导管表面真菌生物膜的形成。

Polymer multilayers loaded with antifungal β-peptides kill planktonic Candida albicans and reduce formation of fungal biofilms on the surfaces of flexible catheter tubes.

作者信息

Raman Namrata, Lee Myung-Ryul, Palecek Sean P, Lynn David M

机构信息

Department of Chemical and Biological Engineering, 1415 Engineering Drive, University of Wisconsin-Madison, Madison 53706, USA.

Department of Chemical and Biological Engineering, 1415 Engineering Drive, University of Wisconsin-Madison, Madison 53706, USA.

出版信息

J Control Release. 2014 Oct 10;191:54-62. doi: 10.1016/j.jconrel.2014.05.026. Epub 2014 May 24.

Abstract

Candida albicans is the most common fungal pathogen responsible for hospital-acquired infections. Most C. albicans infections are associated with the implantation of medical devices that act as points of entry for the pathogen and as substrates for the growth of fungal biofilms that are notoriously difficult to eliminate by systemic administration of conventional antifungal agents. In this study, we report a fill-and-purge approach to the layer-by-layer fabrication of biocompatible, nanoscale 'polyelectrolyte multilayers' (PEMs) on the luminal surfaces of flexible catheters, and an investigation of this platform for the localized, intraluminal release of a cationic β-peptide-based antifungal agent. We demonstrate that polyethylene catheter tubes with luminal surfaces coated with multilayers ~700nm thick fabricated from poly-l-glutamic acid (PGA) and poly-l-lysine (PLL) can be loaded, post-fabrication, by infusion with β-peptide, and that this approach promotes extended intraluminal release of this agent (over ~4months) when incubated in physiological media. The β-peptide remained potent against intraluminal inoculation of the catheters with C. albicans and substantially reduced the formation of C. albicans biofilms on the inner surfaces of film-coated catheters. Finally, we report that these β-peptide-loaded coatings exhibit antifungal activity under conditions that simulate intermittent catheter use and microbial challenge for at least three weeks. We conclude that β-peptide-loaded PEMs offer a novel and promising approach to kill C. albicans and prevent fungal biofilm formation on surfaces, with the potential to substantially reduce the incidence of device-associated infections in indwelling catheters. β-Peptides comprise a promising new class of antifungal agents that could help address problems associated with the use of conventional antifungal agents. The versatility of the layer-by-layer approach used here thus suggests additional opportunities to exploit these new agents in other biomedical and personal care applications in which fungal infections are endemic.

摘要

白色念珠菌是医院获得性感染中最常见的真菌病原体。大多数白色念珠菌感染与医疗设备的植入有关,这些设备是病原体的进入点,也是真菌生物膜生长的底物,而传统抗真菌药物的全身给药很难消除真菌生物膜。在本研究中,我们报告了一种在柔性导管腔表面逐层制造生物相容性纳米级“聚电解质多层膜”(PEMs)的填充和清除方法,并对该平台进行了研究,以实现基于阳离子β肽的抗真菌剂的局部腔内释放。我们证明,由聚-L-谷氨酸(PGA)和聚-L-赖氨酸(PLL)制成的约700nm厚的多层膜涂层的聚乙烯导管管在制造后可以通过注入β肽进行加载,并且当在生理介质中孵育时,这种方法促进了该药剂的长时间腔内释放(超过约4个月)。β肽对白色念珠菌腔内接种导管仍具有效力,并显著减少了膜涂层导管内表面上白色念珠菌生物膜的形成。最后,我们报告这些负载β肽的涂层在模拟间歇性导管使用和微生物挑战的条件下至少三周内均表现出抗真菌活性。我们得出结论,负载β肽的PEMs提供了一种新颖且有前景的方法来杀死白色念珠菌并防止表面真菌生物膜形成,有可能大幅降低留置导管中与设备相关感染的发生率。β肽是一类有前景的新型抗真菌剂,可有助于解决与传统抗真菌剂使用相关的问题。因此,这里使用的逐层方法的多功能性表明,在真菌感染流行的其他生物医学和个人护理应用中利用这些新型药剂还有更多机会。

相似文献

6
Small-Molecule Morphogenesis Modulators Enhance the Ability of 14-Helical β-Peptides To Prevent Candida albicans Biofilm Formation.
Antimicrob Agents Chemother. 2019 Aug 23;63(9). doi: 10.1128/AAC.02653-18. Print 2019 Sep.
8
Histatin 5 variant reduces Candida albicans biofilm viability and inhibits biofilm formation.
Fungal Genet Biol. 2021 Apr;149:103529. doi: 10.1016/j.fgb.2021.103529. Epub 2021 Feb 14.
9
Candida albicans biofilm formation on peptide functionalized polydimethylsiloxane.
Biofouling. 2010;26(3):269-75. doi: 10.1080/08927010903501908.
10
In vitro analyses of the effects of heparin and parabens on Candida albicans biofilms and planktonic cells.
Antimicrob Agents Chemother. 2012 Jan;56(1):148-53. doi: 10.1128/AAC.05061-11. Epub 2011 Oct 10.

引用本文的文献

1
Holistic Molecular Design of Ionic Surfaces for Tailored Water Wettability and Technical Applications.
Nanomaterials (Basel). 2025 Apr 11;15(8):591. doi: 10.3390/nano15080591.
3
Biofilm: The invisible culprit in catheter-induced candidemia.
AIMS Microbiol. 2023 May 11;9(3):467-485. doi: 10.3934/microbiol.2023025. eCollection 2023.
4
Streptomyces: Derived Active Extract Inhibits Candida albicans Biofilm Formation.
Curr Microbiol. 2022 Sep 25;79(11):332. doi: 10.1007/s00284-022-03013-1.
5
Polyelectrolyte Multilayered Capsules as Biomedical Tools.
Polymers (Basel). 2022 Jan 25;14(3):479. doi: 10.3390/polym14030479.
7
Nanostructured Antimicrobial Peptides: Crucial Steps of Overcoming the Bottleneck for Clinics.
Front Microbiol. 2021 Aug 12;12:710199. doi: 10.3389/fmicb.2021.710199. eCollection 2021.
8
Polyelectrolyte Multilayers on Soft Colloidal Nanosurfaces: A New Life for the Layer-By-Layer Method.
Polymers (Basel). 2021 Apr 9;13(8):1221. doi: 10.3390/polym13081221.
9
Histatin 5 variant reduces Candida albicans biofilm viability and inhibits biofilm formation.
Fungal Genet Biol. 2021 Apr;149:103529. doi: 10.1016/j.fgb.2021.103529. Epub 2021 Feb 14.

本文引用的文献

1
A review of the biomaterials technologies for infection-resistant surfaces.
Biomaterials. 2013 Nov;34(34):8533-54. doi: 10.1016/j.biomaterials.2013.07.089. Epub 2013 Aug 15.
3
Amphotericin B formulations: a comparative review of efficacy and toxicity.
Drugs. 2013 Jun;73(9):919-34. doi: 10.1007/s40265-013-0069-4.
4
Hidden killers: human fungal infections.
Sci Transl Med. 2012 Dec 19;4(165):165rv13. doi: 10.1126/scitranslmed.3004404.
5
Biological responses of silver-coated thermosets: an in vitro and in vivo study.
Acta Biomater. 2013 Feb;9(2):5088-99. doi: 10.1016/j.actbio.2012.10.002. Epub 2012 Oct 8.
6
Biomaterial-associated infection: locating the finish line in the race for the surface.
Sci Transl Med. 2012 Sep 26;4(153):153rv10. doi: 10.1126/scitranslmed.3004528.
7
Dual action antimicrobials: nitric oxide release from quaternary ammonium-functionalized silica nanoparticles.
Biomacromolecules. 2012 Oct 8;13(10):3334-42. doi: 10.1021/bm301108x. Epub 2012 Sep 21.
8
The PATH (Prospective Antifungal Therapy) Alliance® registry and invasive fungal infections: update 2012.
Diagn Microbiol Infect Dis. 2012 Aug;73(4):293-300. doi: 10.1016/j.diagmicrobio.2012.06.012.
10
Release of vancomycin from multilayer coated absorbent gelatin sponges.
J Control Release. 2012 Jan 10;157(1):64-71. doi: 10.1016/j.jconrel.2011.09.062. Epub 2011 Sep 12.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验