Markkula Gustav, Boer Erwin, Romano Richard, Merat Natasha
Institute for Transport Studies, University of Leeds, Leeds, UK.
Biol Cybern. 2018 Jun;112(3):181-207. doi: 10.1007/s00422-017-0743-9. Epub 2018 Feb 16.
A conceptual and computational framework is proposed for modelling of human sensorimotor control and is exemplified for the sensorimotor task of steering a car. The framework emphasises control intermittency and extends on existing models by suggesting that the nervous system implements intermittent control using a combination of (1) motor primitives, (2) prediction of sensory outcomes of motor actions, and (3) evidence accumulation of prediction errors. It is shown that approximate but useful sensory predictions in the intermittent control context can be constructed without detailed forward models, as a superposition of simple prediction primitives, resembling neurobiologically observed corollary discharges. The proposed mathematical framework allows straightforward extension to intermittent behaviour from existing one-dimensional continuous models in the linear control and ecological psychology traditions. Empirical data from a driving simulator are used in model-fitting analyses to test some of the framework's main theoretical predictions: it is shown that human steering control, in routine lane-keeping and in a demanding near-limit task, is better described as a sequence of discrete stepwise control adjustments, than as continuous control. Results on the possible roles of sensory prediction in control adjustment amplitudes, and of evidence accumulation mechanisms in control onset timing, show trends that match the theoretical predictions; these warrant further investigation. The results for the accumulation-based model align with other recent literature, in a possibly converging case against the type of threshold mechanisms that are often assumed in existing models of intermittent control.
本文提出了一个用于模拟人类感觉运动控制的概念性和计算性框架,并以驾驶汽车的感觉运动任务为例进行说明。该框架强调控制的间歇性,并在现有模型的基础上进行了扩展,提出神经系统通过以下组合实现间歇性控制:(1)运动原语,(2)对运动动作的感觉结果进行预测,以及(3)对预测误差进行证据积累。研究表明,在间歇性控制的背景下,无需详细的前向模型,就可以构建近似但有用的感觉预测,作为简单预测原语的叠加,类似于神经生物学中观察到的伴随放电。所提出的数学框架允许从线性控制和生态心理学传统中的现有一维连续模型直接扩展到间歇性行为。驾驶模拟器的实证数据用于模型拟合分析,以检验该框架的一些主要理论预测:结果表明,在常规车道保持和要求苛刻的接近极限任务中,人类转向控制更适合描述为一系列离散的逐步控制调整,而不是连续控制。关于感觉预测在控制调整幅度中的可能作用以及证据积累机制在控制开始时间中的作用的结果,显示出与理论预测相符的趋势;这些值得进一步研究。基于积累的模型的结果与其他近期文献一致,这可能是一个反对现有间歇性控制模型中经常假设的阈值机制类型的趋同案例。