Department of Biology, Institute for Theoretical Biology, Humboldt-Universität zu Berlin, 10115 Berlin, Germany, Bernstein Center for Computational Neuroscience Berlin, 10115 Berlin, Germany, and Charité-Universitätsmedizin Berlin, Neuroscience Research Center, 10117 Berlin, Germany.
Department of Biology, Institute for Theoretical Biology, Humboldt-Universität zu Berlin, 10115 Berlin, Germany, Bernstein Center for Computational Neuroscience Berlin, 10115 Berlin, Germany, and.
J Neurosci. 2014 May 28;34(22):7715-31. doi: 10.1523/JNEUROSCI.5136-13.2014.
Spatial information about the environment is encoded by the activity of place and grid cells in the hippocampal formation. As an animal traverses a cell's firing field, action potentials progressively shift to earlier phases of the theta oscillation (6-10 Hz). This "phase precession" is observed also in the prefrontal cortex and the ventral striatum, but mechanisms for its generation are unknown. However, once phase precession exists in one region, it might also propagate to downstream regions. Using a computational model, we analyze such inheritance of phase precession, for example, from the entorhinal cortex to CA1 and from CA3 to CA1. We find that distinctive subthreshold and suprathreshold features of the membrane potential of CA1 pyramidal cells (Harvey et al., 2009; Mizuseki et al., 2012; Royer et al., 2012) can be explained by inheritance and that excitatory input is essential. The model explains how inhibition modulates the slope and range of phase precession and provides two main testable predictions. First, theta-modulated inhibitory input to a CA1 pyramidal cell is not necessary for phase precession. Second, theta-modulated inhibitory input on its own generates membrane potential peaks that are in phase with peaks of the extracellular field. Furthermore, we suggest that the spatial distribution of field centers of a population of phase-precessing input cells determines, not only the place selectivity, but also the characteristics of phase precession of the targeted output cell. The inheritance model thus can explain why phase precession is observed throughout the hippocampal formation and other areas of the brain.
环境的空间信息由海马结构中的位置和网格细胞的活动编码。当动物穿越细胞的发射场时,动作电位逐渐转移到theta 振荡的早期阶段(6-10 Hz)。这种“相位超前”也在前额叶皮层和腹侧纹状体中观察到,但产生这种现象的机制尚不清楚。然而,一旦相位超前存在于一个区域,它也可能传播到下游区域。使用计算模型,我们分析了这种相位超前的继承,例如,从内嗅皮层到 CA1 和从 CA3 到 CA1。我们发现 CA1 锥体神经元膜电位的亚阈值和超阈值特征(Harvey 等人,2009;Mizuseki 等人,2012;Royer 等人,2012)可以通过继承来解释,并且兴奋性输入是必不可少的。该模型解释了抑制如何调节相位超前的斜率和范围,并提供了两个主要的可测试预测。首先,theta 调制的抑制性输入到 CA1 锥体神经元对于相位超前不是必需的。其次,theta 调制的抑制性输入本身会产生与细胞外场峰值同相的膜电位峰值。此外,我们认为,一群相位超前输入细胞的场中心的空间分布不仅决定了位置选择性,而且决定了目标输出细胞的相位超前的特征。因此,继承模型可以解释为什么相位超前在整个海马体和大脑的其他区域都被观察到。