Laboratory of Systemic Organization of Neurons, Institute of Theoretical and Experimental Biophysics of Russian Academy of Sciences, Institutskya, 3, Pushchino, 124290, Moscow Region, Russian Federation.
Faculty of General and Applied Physics, Moscow Institute of Physics and Technology (National Research University), Institutsky Lane, 9, Dolgoprudnyi, 141701, Moscow Region, Russian Federation.
J Comput Neurosci. 2022 Aug;51(3):389-403. doi: 10.1007/s10827-023-00855-x. Epub 2023 Jul 5.
Place cells are hippocampal neurons encoding the position of an animal in space. Studies of place cells are essential to understanding the processing of information by neural networks of the brain. An important characteristic of place cell spike trains is phase precession. When an animal is running through the place field, the discharges of the place cells shift from the ascending phase of the theta rhythm through the minimum to the descending phase. The role of excitatory inputs to pyramidal neurons along the Schaffer collaterals and the perforant pathway in phase precession is described, but the role of local interneurons is poorly understood. Our goal is estimating of the contribution of field CA1 interneurons to the phase precession of place cells using mathematical methods. The CA1 field is chosen because it provides the largest set of experimental data required to build and verify the model. Our simulations discover optimal parameters of the excitatory and inhibitory inputs to the pyramidal neuron so that it generates a spike train with the effect of phase precession. The uniform inhibition of pyramidal neurons best explains the effect of phase precession. Among interneurons, axo-axonal neurons make the greatest contribution to the inhibition of pyramidal cells.
位置细胞是编码动物在空间中位置的海马神经元。研究位置细胞对于理解大脑神经网络的信息处理至关重要。位置细胞尖峰序列的一个重要特征是相位超前。当动物在位置场中奔跑时,位置细胞的放电从θ节律的上升相通过最小值转移到下降相。描述了沿 Schaffer 侧支和穿通通路到锥体神经元的兴奋性输入在相位超前中的作用,但局部中间神经元的作用知之甚少。我们的目标是使用数学方法估计 CA1 场中间神经元对位置细胞相位超前的贡献。选择 CA1 场是因为它提供了构建和验证模型所需的最大一组实验数据。我们的模拟发现了向锥体神经元输入的最佳兴奋和抑制参数,以便它产生具有相位超前效应的尖峰序列。对锥体神经元的均匀抑制能最好地解释相位超前的作用。在中间神经元中,轴突-轴突神经元对锥体细胞的抑制作用最大。