Suppr超能文献

海马位置细胞中的高效相位编码。

Efficient phase coding in hippocampal place cells.

作者信息

Seenivasan Pavithraa, Narayanan Rishikesh

机构信息

Cellular Neurophysiology Laboratory, Molecular Biophysics Unit, Indian Institute of Science, Bangalore 560012, India.

出版信息

Phys Rev Res. 2020 Sep 11;2(3):033393. doi: 10.1103/PhysRevResearch.2.033393. eCollection 2020 Jul-Sep.

Abstract

Neural codes have been postulated to build efficient representations of the external world. The hippocampus, an encoding system, employs neuronal firing rates and spike phases to encode external space. Although the biophysical origin of such codes is at a single neuronal level, the role of neural components in efficient coding is not understood. The complexity of this problem lies in the dimensionality of the parametric space encompassing neural components, and is amplified by the enormous biological heterogeneity observed in each parameter. A central question that spans encoding systems therefore is how neurons arrive at efficient codes in the face of widespread biological heterogeneities. To answer this, we developed a conductance-based spiking model for phase precession, a phase code of external space exhibited by hippocampal place cells. Our model accounted for several experimental observations on place cell firing and electrophysiology: the emergence of phase precession from exact spike timings of conductance-based models with neuron-specific ion channels and receptors; biological heterogeneities in neural components and excitability; the emergence of subthreshold voltage ramp, increased firing rate, enhanced theta power within the place field; a signature reduction in extracellular theta frequency compared to its intracellular counterpart; and experience-dependent asymmetry in firing-rate profile. We formulated phase-coding efficiency, using Shannon's information theory, as an information maximization problem with spike phase as the response and external space within a single place field as the stimulus. We employed an unbiased stochastic search spanning an 11-dimensional neural space, involving thousands of iterations that accounted for the biophysical richness and neuron-to-neuron heterogeneities. We found a small subset of models that exhibited efficient spatial information transfer through the phase code, and investigated the distinguishing features of this subpopulation at the parametric and functional scales. At the parametric scale, which spans the molecular components that defined the neuron, several nonunique parametric combinations with weak pairwise correlations yielded models with similar high phase-coding efficiency. Importantly, placing additional constraints on these models in terms of matching other aspects of hippocampal neural responses did not hamper parametric degeneracy. We provide quantitative evidence demonstrating this parametric degeneracy to be a consequence of a many-to-one relationship between the different parameters and phase-coding efficiency. At the functional scale, involving the cellular-scale neural properties, our analyses revealed an important higher-order constraint that was exclusive to models exhibiting efficient phase coding. Specifically, we found a counterbalancing negative correlation between neuronal gain and the strength of external synaptic inputs as a critical functional constraint for the emergence of efficient phase coding. These observations implicate intrinsic neural properties as important contributors in effectuating such counterbalance, which can be achieved by recruiting nonunique parametric combinations. Finally, we show that a change in afferent statistics, manifesting as input asymmetry onto these neuronal models, induced an adaptive shift in the phase code that preserved its efficiency. Together, our analyses unveil parametric degeneracy as a mechanism to harness widespread neuron-to-neuron heterogeneity towards accomplishing stable and efficient encoding, provided specific higher-order functional constraints on the relationship of neural gain to external inputs are satisfied.

摘要

神经编码被认为是构建外部世界的有效表征。海马体作为一种编码系统,利用神经元放电率和尖峰相位来编码外部空间。尽管这种编码的生物物理起源处于单个神经元层面,但神经组件在高效编码中的作用尚不清楚。这个问题的复杂性在于包含神经组件的参数空间的维度,并且由于在每个参数中观察到的巨大生物异质性而被放大。因此,一个贯穿编码系统的核心问题是神经元如何在广泛的生物异质性面前实现高效编码。为了回答这个问题,我们开发了一种基于电导的尖峰模型来研究相位进动,这是海马体位置细胞所展现的一种外部空间相位编码。我们的模型解释了关于位置细胞放电和电生理学的几个实验观察结果:基于电导的模型中具有神经元特异性离子通道和受体的精确尖峰时间导致相位进动的出现;神经组件和兴奋性的生物异质性;阈下电压斜坡的出现、放电率增加、位置场内θ功率增强;与细胞内对应物相比,细胞外θ频率的特征性降低;以及放电率分布中依赖经验的不对称性。我们使用香农信息论将相位编码效率表述为一个信息最大化问题,以尖峰相位作为响应,单个位置场内的外部空间作为刺激。我们采用了一种无偏随机搜索,跨越一个11维的神经空间,涉及数千次迭代,考虑了生物物理丰富性和神经元间的异质性。我们发现了一小部分通过相位编码表现出高效空间信息传递的模型,并在参数和功能尺度上研究了这一子群体的显著特征。在跨越定义神经元的分子组件的参数尺度上,几个具有弱成对相关性的非唯一参数组合产生了具有相似高相位编码效率的模型。重要的是,在匹配海马体神经反应的其他方面对这些模型施加额外约束并不会妨碍参数简并性。我们提供了定量证据,证明这种参数简并性是不同参数与相位编码效率之间多对一关系的结果。在涉及细胞尺度神经特性的功能尺度上,我们的分析揭示了一个重要的高阶约束,这是表现出高效相位编码的模型所特有的。具体来说,我们发现神经元增益与外部突触输入强度之间的平衡负相关是高效相位编码出现的关键功能约束。这些观察结果表明内在神经特性是实现这种平衡的重要因素,这可以通过采用非唯一参数组合来实现。最后,我们表明传入统计的变化,表现为这些神经元模型上的输入不对称,会引起相位编码的适应性转变,同时保持其效率。总之,我们的分析揭示了参数简并性是一种机制,可利用广泛的神经元间异质性来实现稳定和高效的编码,前提是满足神经增益与外部输入关系的特定高阶功能约束。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a383/7116119/a536f1443c1a/EMS94969-f001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验