Suppr超能文献

一种用于治疗性上肢外骨骼神经控制的临床前框架。

A Pre-Clinical Framework for Neural Control of a Therapeutic Upper-Limb Exoskeleton.

作者信息

Blank Amy, O'Malley Marcia K, Francisco Gerard E, Contreras-Vidal Jose L

机构信息

Department of Mechanical Engineering and Materials Science, Rice University, Houston, TX, USA.

Department of Physical Medicine and Rehabilitation, University of Texas Health Science Center, Houston, TX 77004, USA.

出版信息

Int IEEE EMBS Conf Neural Eng. 2013:1159-1162. doi: 10.1109/NER.2013.6696144.

Abstract

In this paper, we summarize a novel approach to robotic rehabilitation that capitalizes on the benefits of patient intent and real-time assessment of impairment. Specifically, an upper-limb, physical human-robot interface (the MAHI EXO-II robotic exoskeleton) is augmented with a non-invasive brain-machine interface (BMI) to include the patient in the control loop, thereby making the therapy 'active' and engaging patients across a broad spectrum of impairment severity in the rehabilitation tasks. Robotic measures of motor impairment are derived from real-time sensor data from the MAHI EXO-II and the BMI. These measures can be validated through correlation with widely used clinical measures and used to drive patient-specific therapy sessions adapted to the capabilities of the individual, with the MAHI EXO-II providing assistance or challenging the participant as appropriate to maximize rehabilitation outcomes. This approach to robotic rehabilitation takes a step towards the seamless integration of BMIs and intelligent exoskeletons to create systems that can monitor and interface with brain activity and movement. Such systems will enable more focused study of various issues in development of devices and rehabilitation strategies, including interpretation of measurement data from a variety of sources, exploration of hypotheses regarding large scale brain function during robotic rehabilitation, and optimization of device design and training programs for restoring upper limb function after stroke.

摘要

在本文中,我们总结了一种新型的机器人康复方法,该方法利用了患者意图和损伤实时评估的优势。具体而言,一种上肢物理人机接口(MAHI EXO-II机器人外骨骼)通过非侵入性脑机接口(BMI)进行增强,将患者纳入控制回路,从而使治疗“主动化”,并让不同损伤严重程度的患者参与康复任务。运动损伤的机器人测量数据来自MAHI EXO-II和BMI的实时传感器数据。这些测量数据可通过与广泛使用的临床测量方法进行相关性验证,并用于推动根据个体能力定制的患者特定治疗疗程,MAHI EXO-II会根据情况提供协助或对参与者提出挑战,以最大限度地提高康复效果。这种机器人康复方法朝着将BMI与智能外骨骼无缝集成迈出了一步,以创建能够监测大脑活动并与之交互的系统。此类系统将使人们能够更有针对性地研究设备开发和康复策略中的各种问题,包括对来自各种来源的测量数据的解读、关于机器人康复期间大规模脑功能的假设探索,以及中风后恢复上肢功能的设备设计和训练计划的优化。

相似文献

本文引用的文献

3
Neuroplasticity in the context of motor rehabilitation after stroke.脑卒中后运动康复中的神经可塑性。
Nat Rev Neurol. 2011 Feb;7(2):76-85. doi: 10.1038/nrneurol.2010.200. Epub 2011 Jan 18.
9
Emergence of a stable cortical map for neuroprosthetic control.用于神经假体控制的稳定皮质图谱的出现。
PLoS Biol. 2009 Jul;7(7):e1000153. doi: 10.1371/journal.pbio.1000153. Epub 2009 Jul 21.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验