Gat Yair, Vardi-Kilshtain Alexandra, Grossman Iris, Major Dan Thomas, Fass Deborah
Department of Structural Biology, Weizmann Institute of Science, Rehovot, 76100, Israel.
Protein Sci. 2014 Aug;23(8):1102-12. doi: 10.1002/pro.2496. Epub 2014 Jun 18.
Thioredoxin superfamily proteins introduce disulfide bonds into substrates, catalyze the removal of disulfides, and operate in electron relays. These functions rely on one or more dithiol/disulfide exchange reactions. The flavoenzyme quiescin sulfhydryl oxidase (QSOX), a catalyst of disulfide bond formation with an interdomain electron transfer step in its catalytic cycle, provides a unique opportunity for exploring the structural environment of enzymatic dithiol/disulfide exchange. Wild-type Rattus norvegicus QSOX1 (RnQSOX1) was crystallized in a conformation that juxtaposes the two redox-active di-cysteine motifs in the enzyme, presenting the entire electron-transfer pathway and proton-transfer participants in their native configurations. As such a state cannot generally be enriched and stabilized for analysis, RnQSOX1 gives unprecedented insight into the functional group environments of the four cysteines involved in dithiol/disulfide exchange and provides the framework for analysis of the energetics of electron transfer in the presence of the bound flavin adenine dinucleotide cofactor. Hybrid quantum mechanics/molecular mechanics (QM/MM) free energy simulations based on the X-ray crystal structure suggest that formation of the interdomain disulfide intermediate is highly favorable and secures the flexible enzyme in a state from which further electron transfer via the flavin can occur.
硫氧还蛋白超家族蛋白可将二硫键引入底物、催化二硫键的去除,并参与电子传递。这些功能依赖于一个或多个二硫醇/二硫化物交换反应。黄素酶静止蛋白巯基氧化酶(QSOX)是一种在催化循环中具有结构域间电子转移步骤的二硫键形成催化剂,为探索酶促二硫醇/二硫化物交换的结构环境提供了独特的机会。野生型褐家鼠QSOX1(RnQSOX1)以一种使酶中两个氧化还原活性二半胱氨酸基序并列的构象结晶,呈现出整个电子传递途径和质子传递参与者的天然构型。由于这种状态通常无法富集和稳定以进行分析,RnQSOX1为参与二硫醇/二硫化物交换的四个半胱氨酸的官能团环境提供了前所未有的见解,并为在结合黄素腺嘌呤二核苷酸辅因子存在下分析电子转移的能量学提供了框架。基于X射线晶体结构的混合量子力学/分子力学(QM/MM)自由能模拟表明,结构域间二硫键中间体的形成非常有利,并使柔性酶处于一种可以通过黄素进一步发生电子转移的状态。