Dipartimento di Fisica, Sapienza Università di Roma, 00185 Rome, Italy; and.
Dipartimento di Fisica, Sapienza Università di Roma, 00185 Rome, Italy; andDipartimento di Scienze Fisiche e Chimiche, Università degli Studi dell' Aquila, 67100 L' Aquila, Italy
Proc Natl Acad Sci U S A. 2014 Jun 17;111(24):8723-8. doi: 10.1073/pnas.1401719111. Epub 2014 Jun 2.
Water oxidation in photosynthetic organisms occurs through the five intermediate steps S0-S4 of the Kok cycle in the oxygen evolving complex of photosystem II (PSII). Along the catalytic cycle, four electrons are subsequently removed from the Mn4CaO5 core by the nearby tyrosine Tyr-Z, which is in turn oxidized by the chlorophyll special pair P680, the photo-induced primary donor in PSII. Recently, two Mn4CaO5 conformations, consistent with the S2 state (namely, S2(A) and S2(B) models) were suggested to exist, perhaps playing a different role within the S2-to-S3 transition. Here we report multiscale ab initio density functional theory plus U simulations revealing that upon such oxidation the relative thermodynamic stability of the two previously proposed geometries is reversed, the S2(B) state becoming the leading conformation. In this latter state a proton coupled electron transfer is spontaneously observed at ∼100 fs at room temperature dynamics. Upon oxidation, the Mn cluster, which is tightly electronically coupled along dynamics to the Tyr-Z tyrosyl group, releases a proton from the nearby W1 water molecule to the close Asp-61 on the femtosecond timescale, thus undergoing a conformational transition increasing the available space for the subsequent coordination of an additional water molecule. The results can help to rationalize previous spectroscopic experiments and confirm, for the first time to our knowledge, that the water-splitting reaction has to proceed through the S2(B) conformation, providing the basis for a structural model of the S3 state.
在光合生物中,水的氧化是通过光系统 II(PSII)中的放氧复合体内 Kok 循环的五个中间步骤 S0-S4 进行的。在催化循环中,四个电子随后被附近的酪氨酸 Tyr-Z 从 Mn4CaO5 核心中去除,而 Tyr-Z 本身则被叶绿素特殊对 P680 氧化,P680 是 PSII 中的光诱导原初供体。最近,两种 Mn4CaO5 构象,与 S2 态一致(即 S2(A)和 S2(B)模型),被认为存在,也许在 S2 到 S3 转变中发挥不同的作用。在这里,我们报告了多尺度从头算密度泛函理论加 U 模拟结果,表明在这种氧化作用下,之前提出的两种几何形状的相对热力学稳定性发生了反转,S2(B)状态成为主导构象。在这个后一种状态下,在室温动力学下,在 100fs 左右自发观察到质子耦合电子转移。在氧化过程中,Mn 簇与 Tyr-Z 酪氨酸基团在动力学上紧密电子耦合,从附近的 W1 水分子中向附近的 Asp-61 释放质子,从而在飞秒时间尺度上经历构象转变,增加了后续配位额外水分子的可用空间。这些结果有助于合理化以前的光谱实验,并首次证实水分解反应必须通过 S2(B)构象进行,为 S3 态的结构模型提供了基础。