Suppr超能文献

深共熔溶剂:纳米级和功能材料的可持续介质。

Deep eutectic solvents: sustainable media for nanoscale and functional materials.

机构信息

Department of Chemistry, University of Missouri-Columbia , 601 South College Avenue, Columbia, Missouri 65211, United States.

出版信息

Acc Chem Res. 2014 Aug 19;47(8):2299-308. doi: 10.1021/ar5000488. Epub 2014 Jun 3.

Abstract

Deep eutectic solvents (DESs) represent an alternative class of ionic fluids closely resembling room-temperature ionic liquids (RTILs), although, strictly speaking, they are distinguished by the fact that they also contain an organic molecular component (typically, a hydrogen bond donor like a urea, amide, acid, or polyol), frequently as the predominant constituent. Practically speaking, DESs are attractive alternatives to RTILs, sharing most of their remarkable qualities (e.g., tolerance to humidity, negligible vapor pressure, thermostability, wide electrochemical potential windows, tunability) while overcoming several limitations associated with their RTIL cousins. Particularly, DESs are typically, less expensive, more synthetically accessible (typically, from bulk commodity chemicals using solvent/waste-free processes), nontoxic, and biodegradable. In this Account, we provide an overview of DESs as designer solvents to create well-defined nanomaterials including shape-controlled nanoparticles, electrodeposited films, metal-organic frameworks, colloidal assemblies, hierarchically porous carbons, and DNA/RNA architectures. These breakthroughs illustrate how DESs can fulfill multiple roles in directing chemistry at the nanoscale: acting as supramolecular template, metal/carbon source, sacrificial agent (e.g., ammonia release from urea), and/or redox agent, all in the absence of formal stabilizing ligand (here, solvent and stabilizer are one and the same). The ability to tailor the physicochemical properties of DESs is central to controlling their interfacial behavior. The preorganized "supramolecular" nature of DESs provides a soft template to guide the formation of bimodal porous carbon networks or the evolution of electrodeposits. A number of essential parameters (viscosity, polarity, surface tension, hydrogen bonding), plus coordination with solutes/surfaces, all play significant roles in modulating species reactivity and mass transport properties governing the genesis of nanostructure. Furthermore, DES components may modulate nucleation and growth mechanisms by charge neutralization, modification of reduction potentials (or chemical activities), and passivation of particular crystal faces, dictating growth along preferred crystallographic directions. Broad operational windows for electrochemical reactions coupled with their inherent ionic nature facilitate the electrodeposition of alloys and semiconductors inaccessible to classical means and the use of cosolvents or applied potential control provide under-explored strategies for mediating interfacial interactions leading to control over film characteristics. The biocompatibility of DESs suggests intriguing potential for the construction of biomolecular architectures in these novel media. It has been demonstrated that nucleic acid structures can be manipulated in the ionic, crowded, dehydrating (low water activity) DES environment-including the adoption of duplex helical structures divergent from the canonical B form and parallel G-quadruplex DNA persisting near water's boiling point-challenging the misconception that water is a necessity for maintenance of nucleic acid structure/functionality and suggesting an enticing trajectory toward DNA/RNA-based nanocatalysis within a strictly anhydrous medium. DESs offer tremendous opportunities and open intriguing perspectives for generating sophisticated nanostructures within an anhydrous or low-water medium. We conclude this Account by offering our thoughts on the evolution of the field, pointing to areas of clear and compelling utility which will surely see fruition in the coming years. Finally, we highlight a few hurdles (e.g., need for a universal nomenclature, absence of water-immiscible, oriented-phase, and low-viscosity DESs) which, once navigated, will hasten progress in this area.

摘要

深共晶溶剂 (DESs) 是一类类似于室温离子液体 (RTILs) 的离子液体,尽管严格来说,它们的区别在于它们还含有有机分子成分 (通常是氢键供体,如尿素、酰胺、酸或多元醇) ,通常是主要成分。实际上,DESs 是 RTILs 的替代品,具有大多数显著的特性 (例如,对湿度的耐受性、可忽略不计的蒸气压、热稳定性、宽电化学势窗口、可调节性) ,同时克服了与 RTIL 相关的几个局限性。特别是,DESs 通常价格更低廉、更易合成 (通常可从大宗商品化学品中获得,且使用无溶剂/废物的工艺) 、无毒且可生物降解。在本报告中,我们概述了 DESs 作为设计溶剂的用途,用于制备形貌可控的纳米材料,包括形状可控的纳米粒子、电沉积薄膜、金属有机骨架、胶体组装体、分级多孔碳和 DNA/RNA 结构。这些突破说明了 DESs 如何在纳米尺度上实现多种化学作用:作为超分子模板、金属/碳源、牺牲剂 (例如,从尿素中释放氨) 和/或氧化还原试剂,而无需使用正式的稳定配体 (在这里,溶剂和稳定剂是一体的) 。调整 DESs 物理化学性质的能力对于控制其界面行为至关重要。DESs 的预组织“超分子”性质提供了一个软模板,用于指导双模态多孔碳网络的形成或电沉积的演变。许多重要参数 (粘度、极性、表面张力、氢键) ,加上与溶质/表面的配位作用,都在调节物种反应性和质量输运性质方面发挥着重要作用,这些性质控制着纳米结构的形成。此外,DES 成分可以通过电荷中和、还原电位 (或化学活性) 的改变以及特定晶面的钝化来调节成核和生长机制,从而控制沿优先晶向的生长。电化学反应的宽操作窗口及其固有离子特性使得合金和半导体的电沉积成为可能,而经典方法无法实现,使用共溶剂或施加的电势控制则提供了探索较少的策略来调节界面相互作用,从而控制薄膜特性。DESs 的生物相容性表明,在这些新型介质中构建生物分子结构具有诱人的潜力。已经证明,在离子、拥挤、脱水 (低水活度) 的 DES 环境中,可以操纵核酸结构,包括采用与经典 B 型不同的双链螺旋结构和在接近水沸点的位置保持平行 G-四链体 DNA,这挑战了水是维持核酸结构/功能所必需的错误观念,并暗示了在严格无水介质中进行 DNA/RNA 基纳米催化的诱人轨迹。DESs 为在无水或低水介质中生成复杂的纳米结构提供了巨大的机会和令人着迷的视角。我们在本报告中总结了该领域的发展,并指出了明确而引人注目的实用领域,这些领域肯定会在未来几年取得成果。最后,我们强调了一些障碍 (例如,需要通用的命名法、缺乏水不混溶的、定向相和低粘度的 DESs) ,一旦克服了这些障碍,将加速该领域的进展。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验