Suppr超能文献

自旋轨道实现手性自旋纹理的全电学读出。

Spin-orbit enabled all-electrical readout of chiral spin-textures.

作者信息

Lima Fernandes Imara, Blügel Stefan, Lounis Samir

机构信息

Peter Grünberg Institut and Institute for Advanced Simulation, Forschungszentrum Jülich and JARA, D-52425, Jülich, Germany.

Faculty of Physics, University of Duisburg-Essen and CENIDE, 47053, Duisburg, Germany.

出版信息

Nat Commun. 2022 Mar 24;13(1):1576. doi: 10.1038/s41467-022-29237-0.

Abstract

Chirality and topology are intimately related fundamental concepts, which are heavily explored to establish spin-textures as potential magnetic bits in information technology. However, this ambition is inhibited since the electrical reading of chiral attributes is highly non-trivial with conventional current perpendicular-to-plane (CPP) sensing devices. Here we demonstrate from extensive first-principles simulations and multiple scattering expansion the emergence of the chiral spin-mixing magnetoresistance (C-XMR) enabling highly efficient all-electrical readout of the chirality and helicity of respectively one- and two-dimensional magnetic states of matter. It is linear with spin-orbit coupling in contrast to the quadratic dependence associated with the unveiled non-local spin-mixing anisotropic MR (X-AMR). Such transport effects are systematized on various non-collinear magnetic states - spin-spirals and skyrmions - and compared to the uncovered spin-orbit-independent multi-site magnetoresistances. Owing to their simple implementation in readily available reading devices, the proposed magnetoresistances offer exciting and decisive ingredients to explore with all-electrical means the rich physics of topological and chiral magnetic objects.

摘要

手性和拓扑是密切相关的基本概念,人们对它们进行了大量探索,以将自旋纹理确立为信息技术中潜在的磁位。然而,这一目标受到了阻碍,因为使用传统的电流垂直于平面(CPP)传感设备对手性属性进行电学读取非常困难。在此,我们通过广泛的第一性原理模拟和多重散射展开证明了手性自旋混合磁电阻(C-XMR)的出现,它能够分别对物质的一维和二维磁态的手性和螺旋度进行高效的全电学读出。与揭示的非局域自旋混合各向异性磁电阻(X-AMR)所具有的二次依赖性不同,它与自旋轨道耦合呈线性关系。这种输运效应在各种非共线磁态——自旋螺旋和斯格明子——上进行了系统化,并与未发现的与自旋轨道无关的多位点磁电阻进行了比较。由于它们在现成的读取设备中易于实现,所提出的磁电阻为用全电学方法探索拓扑和手性磁性物体的丰富物理特性提供了令人兴奋且具有决定性的要素。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/abf2/8948229/c9db9e556378/41467_2022_29237_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验