Suppr超能文献

RyR1 跨膜结构域的孔动力学和电导。

Pore dynamics and conductance of RyR1 transmembrane domain.

机构信息

Department of Biochemistry and Biophysics, School of Medicine, University of North Carolina, Chapel Hill, North Carolina.

Department of Biochemistry and Biophysics, School of Medicine, University of North Carolina, Chapel Hill, North Carolina.

出版信息

Biophys J. 2014 Jun 3;106(11):2375-84. doi: 10.1016/j.bpj.2014.04.023.

Abstract

Ryanodine receptors (RyR) are calcium release channels, playing a major role in the regulation of muscular contraction. Mutations in skeletal muscle RyR (RyR1) are associated with congenital diseases such as malignant hyperthermia and central core disease (CCD). The absence of high-resolution structures of RyR1 has limited our understanding of channel function and disease mechanisms at the molecular level. Previously, we have reported a hypothetical structure of the RyR1 pore-forming region, obtained by homology modeling and supported by mutational scans, electrophysiological measurements, and cryo-electron microscopy. Here, we utilize the expanded model encompassing six transmembrane helices to calculate the RyR1 pore region conductance, to analyze its structural stability, and to hypothesize the mechanism of the Ile4897 CCD-associated mutation. The calculated conductance of the wild-type RyR1 suggests that the proposed pore structure can sustain ion currents measured in single-channel experiments. We observe a stable pore structure on timescales of 0.2 μs, with multiple cations occupying the selectivity filter and cytosolic vestibule, but not the inner chamber. We further suggest that stability of the selectivity filter critically depends on the interactions between the I4897 residue and several hydrophobic residues of the neighboring subunit. Loss of these interactions in the case of polar substitution I4897T results in destabilization of the selectivity filter, a possible cause of the CCD-specific reduced Ca(2+) conductance.

摘要

Ryanodine 受体(RyR)是钙释放通道,在肌肉收缩的调节中起着重要作用。骨骼肌 RyR(RyR1)的突变与恶性高热和中央核疾病(CCD)等先天性疾病有关。缺乏 RyR1 的高分辨率结构限制了我们在分子水平上对通道功能和疾病机制的理解。此前,我们通过同源建模获得了 RyR1 孔形成区的假设结构,并得到了突变扫描、电生理测量和冷冻电子显微镜的支持。在这里,我们利用包含六个跨膜螺旋的扩展模型来计算 RyR1 孔区的电导率,分析其结构稳定性,并假设 Ile4897 CCD 相关突变的机制。野生型 RyR1 的计算电导率表明,所提出的孔结构可以维持单通道实验中测量到的离子电流。我们观察到在 0.2 μs 的时间尺度上具有稳定的孔结构,多个阳离子占据选择性过滤器和胞质前庭,但不占据内腔。我们进一步表明,选择性过滤器的稳定性取决于 I4897 残基与相邻亚基的几个疏水性残基之间的相互作用。在极性取代 I4897T 的情况下,这些相互作用的丧失会导致选择性过滤器的不稳定,这可能是 CCD 特异性降低 Ca(2+)电导的原因。

相似文献

1
Pore dynamics and conductance of RyR1 transmembrane domain.
Biophys J. 2014 Jun 3;106(11):2375-84. doi: 10.1016/j.bpj.2014.04.023.
2
Channel Gating Dependence on Pore Lining Helix Glycine Residues in Skeletal Muscle Ryanodine Receptor.
J Biol Chem. 2015 Jul 10;290(28):17535-45. doi: 10.1074/jbc.M115.659672. Epub 2015 May 21.
4
A structural model of the pore-forming region of the skeletal muscle ryanodine receptor (RyR1).
PLoS Comput Biol. 2009 Apr;5(4):e1000367. doi: 10.1371/journal.pcbi.1000367. Epub 2009 Apr 24.
7
Ion-pulling simulations provide insights into the mechanisms of channel opening of the skeletal muscle ryanodine receptor.
J Biol Chem. 2017 Aug 4;292(31):12947-12958. doi: 10.1074/jbc.M116.760199. Epub 2017 Jun 5.
8
Investigating dual Ca modulation of the ryanodine receptor 1 by molecular dynamics simulation.
Proteins. 2020 Nov;88(11):1528-1539. doi: 10.1002/prot.25971. Epub 2020 Jul 13.
9
Structural determinants of skeletal muscle ryanodine receptor gating.
J Biol Chem. 2013 Mar 1;288(9):6154-65. doi: 10.1074/jbc.M112.433789. Epub 2013 Jan 14.
10
A central core disease mutation in the Ca-binding site of skeletal muscle ryanodine receptor impairs single-channel regulation.
Am J Physiol Cell Physiol. 2019 Aug 1;317(2):C358-C365. doi: 10.1152/ajpcell.00052.2019. Epub 2019 Jun 5.

引用本文的文献

1
Molecular Determinants of Mg-Mediated Inhibition in RyR1: Insights from Computational Approaches.
ACS Omega. 2025 Jul 7;10(28):30757-30772. doi: 10.1021/acsomega.5c03018. eCollection 2025 Jul 22.
2
Molecular Dynamics Simulations of the Cardiac Ryanodine Receptor Type 2 (RyR2) Gating Mechanism.
J Phys Chem B. 2022 Dec 1;126(47):9790-9809. doi: 10.1021/acs.jpcb.2c03031. Epub 2022 Nov 16.
3
Computational Study of the Ion and Water Permeation and Transport Mechanisms of the SARS-CoV-2 Pentameric E Protein Channel.
Front Mol Biosci. 2020 Sep 23;7:565797. doi: 10.3389/fmolb.2020.565797. eCollection 2020.
6
Interaction of ions with the luminal sides of wild-type and mutated skeletal muscle ryanodine receptors.
J Mol Model. 2016 Jan;22(1):37. doi: 10.1007/s00894-015-2906-8. Epub 2016 Jan 19.
7
Breaking the hydrophobicity of the MscL pore: insights into a charge-induced gating mechanism.
PLoS One. 2015 Mar 31;10(3):e0120196. doi: 10.1371/journal.pone.0120196. eCollection 2015.
8
Selecting ions by size in a calcium channel: the ryanodine receptor case study.
Biophys J. 2014 Nov 18;107(10):2263-73. doi: 10.1016/j.bpj.2014.09.031.

本文引用的文献

1
Functional characterization of the cardiac ryanodine receptor pore-forming region.
PLoS One. 2013 Jun 12;8(6):e66542. doi: 10.1371/journal.pone.0066542. Print 2013.
2
Structural determinants of skeletal muscle ryanodine receptor gating.
J Biol Chem. 2013 Mar 1;288(9):6154-65. doi: 10.1074/jbc.M112.433789. Epub 2013 Jan 14.
5
Conductance properties of the inwardly rectifying channel, Kir3.2: molecular and Brownian dynamics study.
Biochim Biophys Acta. 2013 Feb;1828(2):471-8. doi: 10.1016/j.bbamem.2012.09.022. Epub 2012 Sep 27.
8
Computer Simulations of Voltage-Gated Cation Channels.
J Phys Chem Lett. 2012 Mar 29;3:1017-1023. doi: 10.1021/jz300089g.
9
Mechanism of voltage gating in potassium channels.
Science. 2012 Apr 13;336(6078):229-33. doi: 10.1126/science.1216533.
10
Systematic validation of protein force fields against experimental data.
PLoS One. 2012;7(2):e32131. doi: 10.1371/journal.pone.0032131. Epub 2012 Feb 22.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验