Suppr超能文献

电压门控阳离子通道的计算机模拟

Computer Simulations of Voltage-Gated Cation Channels.

作者信息

Treptow Werner, Klein Michael L

机构信息

Universidade de Brasília, Laboratório de Biologia Teórica e Computacional, Departamento Biologia Celular, BR-70910-900 Brasilia, DF, Brazil.

出版信息

J Phys Chem Lett. 2012 Mar 29;3:1017-1023. doi: 10.1021/jz300089g.

Abstract

The relentless growth in computational power has seen increasing applications of molecular dynamics (MD) simulation to the study of membrane proteins in realistic membrane environments, which include explicit membrane lipids, water and ions. The concomitant increasing availability of membrane protein structures for ion channels, and transporters -- to name just two examples -- has stimulated many of these MD studies. In the case of voltage-gated cation channels (VGCCs) recent computational works have focused on ion-conduction and gating mechanisms, along with their regulation by agonist/antagonist ligands. The information garnered from these computational studies is largely inaccessible to experiment and is crucial for understanding the interplay between the structure and function as well as providing new directions for experiments. This article highlights recent advances in probing the structure and function of potassium channels and offers a perspective on the challenges likely to arise in making analogous progress in characterizing sodium channels.

摘要

随着计算能力的不断提升,分子动力学(MD)模拟在真实膜环境中对膜蛋白的研究得到了越来越广泛的应用,这种环境包括明确的膜脂、水和离子。离子通道和转运蛋白等膜蛋白结构的可得性不断增加(仅举这两个例子),推动了许多此类MD研究。就电压门控阳离子通道(VGCCs)而言,最近的计算工作集中在离子传导和门控机制,以及它们受激动剂/拮抗剂配体的调节。从这些计算研究中获得的信息在很大程度上无法通过实验获取,对于理解结构与功能之间的相互作用以及为实验提供新方向至关重要。本文重点介绍了在探究钾通道结构和功能方面的最新进展,并对在表征钠通道方面取得类似进展可能面临的挑战提出了看法。

相似文献

1
Computer Simulations of Voltage-Gated Cation Channels.
J Phys Chem Lett. 2012 Mar 29;3:1017-1023. doi: 10.1021/jz300089g.
3
K(+) and Na(+) conduction in selective and nonselective ion channels via molecular dynamics simulations.
Biophys J. 2013 Oct 15;105(8):1737-45. doi: 10.1016/j.bpj.2013.08.049.
5
Structural determinants of voltage-gating properties in calcium channels.
Elife. 2021 Mar 30;10:e64087. doi: 10.7554/eLife.64087.
6
Challenges and advances in atomistic simulations of potassium and sodium ion channel gating and permeation.
J Physiol. 2019 Feb;597(3):679-698. doi: 10.1113/JP277088. Epub 2018 Dec 19.
7
Simulation Studies of Ion Permeation and Selectivity in Voltage-Gated Sodium Channels.
Curr Top Membr. 2016;78:215-60. doi: 10.1016/bs.ctm.2016.07.005. Epub 2016 Aug 3.
8
Voltage-Gated Sodium Channels: Mechanistic Insights From Atomistic Molecular Dynamics Simulations.
Curr Top Membr. 2016;78:183-214. doi: 10.1016/bs.ctm.2015.12.002. Epub 2016 Mar 14.
9
Structural basis for activation of voltage-gated cation channels.
Biochemistry. 2013 Mar 5;52(9):1501-13. doi: 10.1021/bi3013017. Epub 2013 Feb 12.
10
Emerging issues of connexin channels: biophysics fills the gap.
Q Rev Biophys. 2001 Aug;34(3):325-472. doi: 10.1017/s0033583501003705.

引用本文的文献

1
Ion channel selectivity through ion-modulated changes of selectivity filter p values.
Proc Natl Acad Sci U S A. 2023 Jun 27;120(26):e2220343120. doi: 10.1073/pnas.2220343120. Epub 2023 Jun 20.
2
Fluoride Transport and Inhibition Across CLC Transporters.
Handb Exp Pharmacol. 2024;283:81-100. doi: 10.1007/164_2022_593.
3
Chanalyzer: A Computational Geometry Approach for the Analysis of Protein Channel Shape and Dynamics.
Front Mol Biosci. 2022 Jul 25;9:933924. doi: 10.3389/fmolb.2022.933924. eCollection 2022.
5
Pore dynamics and conductance of RyR1 transmembrane domain.
Biophys J. 2014 Jun 3;106(11):2375-84. doi: 10.1016/j.bpj.2014.04.023.
6
Sodium channel selectivity and conduction: prokaryotes have devised their own molecular strategy.
J Gen Physiol. 2014 Feb;143(2):157-71. doi: 10.1085/jgp.201311037. Epub 2014 Jan 13.
7
Modeling and simulation of ion channels.
Chem Rev. 2012 Dec 12;112(12):6250-84. doi: 10.1021/cr3002609. Epub 2012 Oct 4.

本文引用的文献

1
Scaling of Multimillion-Atom Biological Molecular Dynamics Simulation on a Petascale Supercomputer.
J Chem Theory Comput. 2009 Oct 13;5(10):2798-808. doi: 10.1021/ct900292r.
2
Molecular dynamics investigation of the ω-current in the Kv1.2 voltage sensor domains.
Biophys J. 2012 Jan 18;102(2):258-67. doi: 10.1016/j.bpj.2011.10.057.
3
Mechanism of ion permeation and selectivity in a voltage gated sodium channel.
J Am Chem Soc. 2012 Jan 25;134(3):1840-6. doi: 10.1021/ja210020h. Epub 2012 Jan 12.
4
Structural basis for gating charge movement in the voltage sensor of a sodium channel.
Proc Natl Acad Sci U S A. 2012 Jan 10;109(2):E93-102. doi: 10.1073/pnas.1118434109. Epub 2011 Dec 12.
5
In search of a consensus model of the resting state of a voltage-sensing domain.
Neuron. 2011 Dec 8;72(5):713-20. doi: 10.1016/j.neuron.2011.09.024.
6
Molecular mapping of general anesthetic sites in a voltage-gated ion channel.
Biophys J. 2011 Oct 5;101(7):1613-22. doi: 10.1016/j.bpj.2011.08.026.
7
Mapping the receptor site for alpha-scorpion toxins on a Na+ channel voltage sensor.
Proc Natl Acad Sci U S A. 2011 Sep 13;108(37):15426-31. doi: 10.1073/pnas.1112320108. Epub 2011 Aug 29.
8
R1 in the Shaker S4 occupies the gating charge transfer center in the resting state.
J Gen Physiol. 2011 Aug;138(2):155-63. doi: 10.1085/jgp.201110642.
9
The crystal structure of a voltage-gated sodium channel.
Nature. 2011 Jul 10;475(7356):353-8. doi: 10.1038/nature10238.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验