Treptow Werner, Klein Michael L
Universidade de Brasília, Laboratório de Biologia Teórica e Computacional, Departamento Biologia Celular, BR-70910-900 Brasilia, DF, Brazil.
J Phys Chem Lett. 2012 Mar 29;3:1017-1023. doi: 10.1021/jz300089g.
The relentless growth in computational power has seen increasing applications of molecular dynamics (MD) simulation to the study of membrane proteins in realistic membrane environments, which include explicit membrane lipids, water and ions. The concomitant increasing availability of membrane protein structures for ion channels, and transporters -- to name just two examples -- has stimulated many of these MD studies. In the case of voltage-gated cation channels (VGCCs) recent computational works have focused on ion-conduction and gating mechanisms, along with their regulation by agonist/antagonist ligands. The information garnered from these computational studies is largely inaccessible to experiment and is crucial for understanding the interplay between the structure and function as well as providing new directions for experiments. This article highlights recent advances in probing the structure and function of potassium channels and offers a perspective on the challenges likely to arise in making analogous progress in characterizing sodium channels.
随着计算能力的不断提升,分子动力学(MD)模拟在真实膜环境中对膜蛋白的研究得到了越来越广泛的应用,这种环境包括明确的膜脂、水和离子。离子通道和转运蛋白等膜蛋白结构的可得性不断增加(仅举这两个例子),推动了许多此类MD研究。就电压门控阳离子通道(VGCCs)而言,最近的计算工作集中在离子传导和门控机制,以及它们受激动剂/拮抗剂配体的调节。从这些计算研究中获得的信息在很大程度上无法通过实验获取,对于理解结构与功能之间的相互作用以及为实验提供新方向至关重要。本文重点介绍了在探究钾通道结构和功能方面的最新进展,并对在表征钠通道方面取得类似进展可能面临的挑战提出了看法。