Leto Domenick F, Jackson Timothy A
Department of Chemistry and Center for Environmentally Beneficial Catalysis, University of Kansas , Lawrence, Kansas 66045, United States.
Inorg Chem. 2014 Jun 16;53(12):6179-94. doi: 10.1021/ic5006902. Epub 2014 Jun 5.
Mn K-edge X-ray absorption spectroscopy (XAS) was used to gain insights into the geometric and electronic structures of [Mn(II)(Cl)2(Me2EBC)], Mn(IV)(OH)2(Me2EBC), and Mn(IV)(O)(OH)(Me2EBC), which are all supported by the tetradentate, macrocyclic Me2EBC ligand (Me2EBC = 4,11-dimethyl-1,4,8,11-tetraazabicyclo[6.6.2]hexadecane). Analysis of extended X-ray absorption fine structure (EXAFS) data for Mn(IV)(O)(OH)(Me2EBC) revealed Mn-O scatterers at 1.71 and 1.84 Å and Mn-N scatterers at 2.11 Å, providing the first unambiguous support for the formulation of this species as an oxohydroxomanganese(IV) adduct. EXAFS-determined structural parameters for [Mn(II)(Cl)2(Me2EBC)] and Mn(IV)(OH)2(Me2EBC) are consistent with previously reported crystal structures. The Mn pre-edge energies and intensities of these complexes were examined within the context of data for other oxo- and hydroxomanganese(IV) adducts, and time-dependent density functional theory (TD-DFT) computations were used to predict pre-edge properties for all compounds considered. This combined experimental and computational analysis revealed a correlation between the Mn-O(H) distances and pre-edge peak areas of Mn(IV)═O and Mn(IV)-OH complexes, but this trend was strongly modulated by the Mn(IV) coordination geometry. Mn 3d-4p mixing, which primarily accounts for the pre-edge intensities, is not solely a function of the Mn-O(H) bond length; the coordination geometry also has a large effect on the distribution of pre-edge intensity. For tetragonal Mn(IV)═O centers, more than 90% of the pre-edge intensity comes from excitations to the Mn═O σ* MO. Trigonal bipyramidal oxomanganese(IV) centers likewise feature excitations to the Mn═O σ* molecular orbital (MO) but also show intense transitions to 3dx(2)-y(2) and 3dxy MOs because of enhanced 3d-4px,y mixing. This gives rise to a broader pre-edge feature for trigonal Mn(IV)═O adducts. These results underscore the importance of reporting experimental pre-edge areas rather than peak heights. Finally, the TD-DFT method was applied to understand the pre-edge properties of a recently reported S = 1 Mn(V)═O adduct; these findings are discussed within the context of previous examinations of oxomanganese(V) complexes.
锰 K 边 X 射线吸收光谱(XAS)被用于深入了解[Mn(II)(Cl)2(Me2EBC)]、Mn(IV)(OH)2(Me2EBC)和Mn(IV)(O)(OH)(Me2EBC)的几何结构和电子结构,这些化合物均由四齿大环 Me2EBC 配体(Me2EBC = 4,11 - 二甲基 - 1,4,8,11 - 四氮杂双环[6.6.2]十六烷)支撑。对Mn(IV)(O)(OH)(Me2EBC)的扩展 X 射线吸收精细结构(EXAFS)数据的分析显示,在 1.71 和 1.84 Å 处有 Mn - O 散射体,在 2.11 Å 处有 Mn - N 散射体,这首次明确支持了该物种被表述为氧氢氧锰(IV)加合物的结构。[Mn(II)(Cl)2(Me2EBC)]和Mn(IV)(OH)2(Me2EBC)的 EXAFS 确定的结构参数与先前报道的晶体结构一致。在其他氧和氢氧锰(IV)加合物的数据背景下,研究了这些配合物的锰前缘能量和强度,并使用含时密度泛函理论(TD - DFT)计算来预测所考虑的所有化合物的前缘性质。这种实验和计算相结合的分析揭示了 Mn(IV)═O 和 Mn(IV) - OH 配合物的 Mn - O(H)距离与前缘峰面积之间的相关性,但这种趋势受到 Mn(IV)配位几何结构的强烈调制。主要决定前缘强度的 Mn 3d - 4p 混合不仅仅是 Mn - O(H)键长的函数;配位几何结构对前缘强度的分布也有很大影响。对于四方 Mn(IV)═O 中心,超过 90%的前缘强度来自于激发到 Mn═O σ分子轨道(MO)。三角双锥氧锰(IV)中心同样具有激发到 Mn═O σ分子轨道(MO)的特征,但由于增强的 3d - 4px,y 混合,也显示出到 3dx(2)-y(2)和 3dxy MOs 的强烈跃迁。这导致三角 Mn(IV)═O 加合物的前缘特征更宽。这些结果强调了报告实验前缘面积而不是峰高的重要性。最后,应用 TD - DFT 方法来理解最近报道的 S = 1 Mn(V)═O 加合物的前缘性质;这些发现是在先前对氧锰(V)配合物的研究背景下进行讨论的。