Biotechnology Center, TU Dresden, Dresden, Germany; Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany.
Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany.
PLoS Comput Biol. 2014 Jun 5;10(6):e1003657. doi: 10.1371/journal.pcbi.1003657. eCollection 2014 Jun.
Repurposing existing proteins for new cellular functions is recognized as a main mechanism of evolutionary innovation, but its role in organelle evolution is unclear. Here, we explore the mechanisms that led to the evolution of the centrosome, an ancestral eukaryotic organelle that expanded its functional repertoire through the course of evolution. We developed a refined sequence alignment technique that is more sensitive to coiled coil proteins, which are abundant in the centrosome. For proteins with high coiled-coil content, our algorithm identified 17% more reciprocal best hits than BLAST. Analyzing 108 eukaryotic genomes, we traced the evolutionary history of centrosome proteins. In order to assess how these proteins formed the centrosome and adopted new functions, we computationally emulated evolution by iteratively removing the most recently evolved proteins from the centrosomal protein interaction network. Coiled-coil proteins that first appeared in the animal-fungi ancestor act as scaffolds and recruit ancestral eukaryotic proteins such as kinases and phosphatases to the centrosome. This process created a signaling hub that is crucial for multicellular development. Our results demonstrate how ancient proteins can be co-opted to different cellular localizations, thereby becoming involved in novel functions.
重新利用现有的蛋白质来实现新的细胞功能被认为是进化创新的主要机制,但它在细胞器进化中的作用尚不清楚。在这里,我们探索了导致中心体进化的机制,中心体是一种古老的真核细胞器,在进化过程中扩展了其功能库。我们开发了一种更灵敏的序列比对技术,用于检测丰富的中心体中的卷曲螺旋蛋白。对于具有高卷曲螺旋含量的蛋白质,我们的算法比 BLAST 多识别出 17%的相互最佳命中。分析了 108 个真核基因组,我们追溯了中心体蛋白的进化历史。为了评估这些蛋白质如何形成中心体并采用新的功能,我们通过从中心体蛋白相互作用网络中迭代地去除最近进化的蛋白质来计算模拟进化。首次出现在动物-真菌祖先中的卷曲螺旋蛋白作为支架,将激酶和磷酸酶等古老的真核蛋白募集到中心体。这个过程创建了一个信号枢纽,对多细胞发育至关重要。我们的研究结果表明,古老的蛋白质如何被重新用于不同的细胞定位,从而参与新的功能。