Suppr超能文献

测量早产儿长期脑电图监测中的脑活动循环(BAC)。

Measuring brain activity cycling (BAC) in long term EEG monitoring of preterm babies.

机构信息

Neonatal Brain Research Group, Irish Centre for Fetal and Neonatal Translational Research (INFANT), University College Cork, Ireland.

出版信息

Physiol Meas. 2014 Jul;35(7):1493-508. doi: 10.1088/0967-3334/35/7/1493. Epub 2014 Jun 5.

Abstract

Measuring fluctuation of vigilance states in early preterm infants undergoing long term intensive care holds promise for monitoring their neurological well-being. There is currently, however, neither objective nor quantitative methods available for this purpose in a research or clinical environment. The aim of this proof-of-concept study was, therefore, to develop quantitative measures of the fluctuation in vigilance states or brain activity cycling (BAC) in early preterm infants. The proposed measures of BAC were summary statistics computed on a frequency domain representation of the proportional duration of spontaneous activity transients (SAT%) calculated from electroencephalograph (EEG) recordings. Eighteen combinations of three statistics and six frequency domain representations were compared to a visual interpretation of cycling in the SAT% signal. Three high performing measures (band energy/periodogram: R = 0.809, relative band energy/nonstationary frequency marginal: R = 0.711, g-statistic/nonstationary frequency marginal: R = 0.638) were then compared to a grading of sleep wake cycling based on the visual interpretation of the amplitude-integrated EEG trend. These measures of BAC are conceptually straightforward, correlate well with the visual scores of BAC and sleep wake cycling, are robust enough to cope with the technically compromised monitoring data available in intensive care units, and are recommended for further validation in prospective studies.

摘要

测量长期接受强化护理的早期早产儿警觉状态的波动有望监测其神经健康状况。然而,目前在研究或临床环境中,既没有用于此目的的客观方法,也没有定量方法。因此,这项概念验证研究的目的是开发用于测量早期早产儿警觉状态波动或脑活动循环(BAC)的定量指标。提出的 BAC 指标是基于脑电图(EEG)记录中自发活动瞬变的比例持续时间(SAT%)的频域表示计算得出的摘要统计数据。将三种统计量和六种频域表示的 18 种组合与 SAT%信号中循环的视觉解释进行了比较。三种性能较高的指标(频带能量/周期图:R = 0.809,相对频带能量/非平稳频率边缘:R = 0.711,g 统计量/非平稳频率边缘:R = 0.638)然后与基于振幅综合脑电图趋势的视觉解释的睡眠觉醒循环分级进行了比较。这些 BAC 指标概念上简单直接,与 BAC 和睡眠觉醒循环的视觉评分相关性良好,足够稳健,可以应对重症监护病房中技术上有缺陷的监测数据,建议在前瞻性研究中进一步验证。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验