Suppr超能文献

使用原型对象分割对视觉杂波感知进行建模。

Modeling visual clutter perception using proto-object segmentation.

作者信息

Yu Chen-Ping, Samaras Dimitris, Zelinsky Gregory J

机构信息

Department of Computer Science, Stony Brook University, Stony Brook, NY, USA.

Department of Computer Science, Stony Brook University, Stony Brook, NY, USADepartment of Psychology, Stony Brook University, Stony Brook, NY, USA.

出版信息

J Vis. 2014 Jun 5;14(7):4. doi: 10.1167/14.7.4.

Abstract

We introduce the proto-object model of visual clutter perception. This unsupervised model segments an image into superpixels, then merges neighboring superpixels that share a common color cluster to obtain proto-objects-defined here as spatially extended regions of coherent features. Clutter is estimated by simply counting the number of proto-objects. We tested this model using 90 images of realistic scenes that were ranked by observers from least to most cluttered. Comparing this behaviorally obtained ranking to a ranking based on the model clutter estimates, we found a significant correlation between the two (Spearman's ρ = 0.814, p < 0.001). We also found that the proto-object model was highly robust to changes in its parameters and was generalizable to unseen images. We compared the proto-object model to six other models of clutter perception and demonstrated that it outperformed each, in some cases dramatically. Importantly, we also showed that the proto-object model was a better predictor of clutter perception than an actual count of the number of objects in the scenes, suggesting that the set size of a scene may be better described by proto-objects than objects. We conclude that the success of the proto-object model is due in part to its use of an intermediate level of visual representation-one between features and objects-and that this is evidence for the potential importance of a proto-object representation in many common visual percepts and tasks.

摘要

我们介绍了视觉杂乱感知的原物体模型。这个无监督模型将图像分割为超像素,然后合并共享同一颜色聚类的相邻超像素,以获得原物体——在此定义为具有连贯特征的空间扩展区域。通过简单地计算原物体的数量来估计杂乱程度。我们使用90张现实场景图像对该模型进行了测试,这些图像由观察者从最不杂乱到最杂乱进行排序。将通过行为获得的排序与基于模型杂乱估计的排序进行比较,我们发现两者之间存在显著相关性(斯皮尔曼相关系数ρ = 0.814,p < 0.001)。我们还发现原物体模型对其参数的变化具有高度鲁棒性,并且可以推广到未见过的图像。我们将原物体模型与其他六种杂乱感知模型进行了比较,结果表明它在每种情况下都优于其他模型,在某些情况下优势明显。重要的是,我们还表明,原物体模型比场景中物体的实际数量更能准确预测杂乱感知,这表明场景的集合大小可能用原物体比用物体来描述更好。我们得出结论,原物体模型的成功部分归因于它使用了视觉表征的中间层次——介于特征和物体之间的层次——并且这证明了原物体表征在许多常见视觉感知和任务中的潜在重要性。

相似文献

2
Clutter perception is invariant to image size.杂乱感知与图像大小无关。
Vision Res. 2015 Nov;116(Pt B):142-51. doi: 10.1016/j.visres.2015.04.017. Epub 2015 May 14.
5
The Neural Dynamics of Attentional Selection in Natural Scenes.自然场景中注意选择的神经动力学
J Neurosci. 2016 Oct 12;36(41):10522-10528. doi: 10.1523/JNEUROSCI.1385-16.2016.
7
Object-level visual information gets through the bottleneck of crowding.目标级视觉信息突破了拥挤的瓶颈。
J Neurophysiol. 2011 Sep;106(3):1389-98. doi: 10.1152/jn.00904.2010. Epub 2011 Jun 15.

引用本文的文献

4
Guided Search 6.0: An updated model of visual search.引导式搜索 6.0:一种更新的视觉搜索模型。
Psychon Bull Rev. 2021 Aug;28(4):1060-1092. doi: 10.3758/s13423-020-01859-9. Epub 2021 Feb 5.
5
Predicting human complexity perception of real-world scenes.预测人类对现实世界场景的复杂性感知。
R Soc Open Sci. 2020 May 13;7(5):191487. doi: 10.1098/rsos.191487. eCollection 2020 May.
7
The nature of correlation perception in scatterplots.散点图中相关性感知的本质。
Psychon Bull Rev. 2017 Jun;24(3):776-797. doi: 10.3758/s13423-016-1174-7.
8
Predicting Complexity Perception of Real World Images.预测对真实世界图像的复杂性感知。
PLoS One. 2016 Jun 23;11(6):e0157986. doi: 10.1371/journal.pone.0157986. eCollection 2016.
9
Clutter perception is invariant to image size.杂乱感知与图像大小无关。
Vision Res. 2015 Nov;116(Pt B):142-51. doi: 10.1016/j.visres.2015.04.017. Epub 2015 May 14.

本文引用的文献

1
SLIC superpixels compared to state-of-the-art superpixel methods.SLIC 超像素与最先进的超像素方法比较。
IEEE Trans Pattern Anal Mach Intell. 2012 Nov;34(11):2274-82. doi: 10.1109/TPAMI.2012.120.
2
Visual search: a retrospective.视觉搜索:一项回顾性研究。
J Vis. 2011 Dec 30;11(5):14. doi: 10.1167/11.5.14.
4
A computational approach to edge detection.一种基于计算的边缘检测方法。
IEEE Trans Pattern Anal Mach Intell. 1986 Jun;8(6):679-98.
7
Contour detection and hierarchical image segmentation.轮廓检测和层次图像分割。
IEEE Trans Pattern Anal Mach Intell. 2011 May;33(5):898-916. doi: 10.1109/TPAMI.2010.161.
8
A crowding model of visual clutter.视觉杂波的拥挤模型。
J Vis. 2009 Apr 28;9(4):24.1-11. doi: 10.1167/9.4.24.
9
Number estimation relies on a set of segmented objects.数字估计依赖于一组分段对象。
Cognition. 2009 Oct;113(1):1-13. doi: 10.1016/j.cognition.2009.07.002. Epub 2009 Aug 3.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验