Institute of Complex Systems, Zelluläre Biophysik (Institute of Complex Systems-4), Forschungszentrum Jülich Jülich, Germany.
Institut für Neurophysiologie, Medizinische Hochschule Hannover Hannover, Germany.
Front Cell Neurosci. 2014 May 23;8:143. doi: 10.3389/fncel.2014.00143. eCollection 2014.
ClC-3 is a member of the CLC family of anion channels and transporters that localizes to early and late endosomes as well as to synaptic vesicles (SV). Its genetic disruption in mouse models results in pronounced hippocampal and retinal neurodegeneration, suggesting that ClC-3 might be important for normal excitatory and/or inhibitory neurotransmission in central neurons. To characterize the role of ClC-3 in glutamate accumulation in SV we compared glutamatergic synaptic transmission in cultured hippocampal neurons from WT and Clcn3-/- mice. In Clcn3-/- neurons the amplitude and frequency of miniature as well as the amplitudes of action-potential evoked EPSCs were significantly increased as compared to WT neurons. The low-affinity competitive AMPA receptor antagonist γ-DGG reduced the quantal size of synaptic events more effectively in WT than in Clcn3-/- neurons, whereas no difference was observed for the high-affinity competitive non-NMDA antagonist NBQX. Paired pulse ratios of evoked EPSCs were significantly reduced, whereas the size of the readily releasable pool was not affected by the genetic ablation of ClC-3. Electron microscopy revealed increased volumes of SV in hippocampi of Clcn3-/- mice. Our findings demonstrate that ClC-3 controls fast excitatory synaptic transmission by regulating the amount of neurotransmitter as well as the release probability of SV. These results provide novel insights into the role of ClC-3 in synaptic transmission and identify excessive glutamate release as a likely basis of neurodegeneration in Clcn3-/-.
ClC-3 是氯离子通道和转运蛋白家族的成员,定位于早期和晚期内体以及突触小泡 (SV)。在小鼠模型中,其基因缺失导致明显的海马和视网膜神经退行性变,表明 ClC-3 可能对中枢神经元的正常兴奋性和/或抑制性神经传递很重要。为了研究 ClC-3 在 SV 中谷氨酸积累中的作用,我们比较了 WT 和 Clcn3-/- 小鼠培养的海马神经元中的谷氨酸能突触传递。与 WT 神经元相比,Clcn3-/- 神经元中的微小动作电位诱发的 EPSC 的幅度和频率、幅度和频率均显著增加。低亲和力竞争 AMPA 受体拮抗剂 γ-DGG 在 WT 神经元中比在 Clcn3-/- 神经元中更有效地减小了突触事件的量子大小,而高亲和力竞争非 NMDA 拮抗剂 NBQX 则没有差异。诱发 EPSC 的成对脉冲比显著降低,而 ClC-3 基因缺失对易释放池的大小没有影响。电镜显示 Clcn3-/- 小鼠海马体中 SV 的体积增加。我们的研究结果表明,ClC-3 通过调节神经递质的数量和 SV 的释放概率来控制快速兴奋性突触传递。这些结果为 ClC-3 在突触传递中的作用提供了新的见解,并确定了过度释放谷氨酸可能是 Clcn3-/- 神经退行性变的基础。