Department of Electrical and Computer Engineering, The Johns Hopkins University Baltimore, MD, USA.
Front Hum Neurosci. 2014 May 27;8:327. doi: 10.3389/fnhum.2014.00327. eCollection 2014.
Bottom-up attention is a sensory-driven selection mechanism that directs perception toward a subset of the stimulus that is considered salient, or attention-grabbing. Most studies of bottom-up auditory attention have adapted frameworks similar to visual attention models whereby local or global "contrast" is a central concept in defining salient elements in a scene. In the current study, we take a more fundamental approach to modeling auditory attention; providing the first examination of the space of auditory saliency spanning pitch, intensity and timbre; and shedding light on complex interactions among these features. Informed by psychoacoustic results, we develop a computational model of auditory saliency implementing a novel attentional framework, guided by processes hypothesized to take place in the auditory pathway. In particular, the model tests the hypothesis that perception tracks the evolution of sound events in a multidimensional feature space, and flags any deviation from background statistics as salient. Predictions from the model corroborate the relationship between bottom-up auditory attention and statistical inference, and argues for a potential role of predictive coding as mechanism for saliency detection in acoustic scenes.
自下而上的注意是一种由感觉驱动的选择机制,它将感知引导到被认为是显著的或引人注目的刺激子集。大多数关于自下而上的听觉注意的研究都采用了类似于视觉注意模型的框架,其中局部或全局“对比”是定义场景中显著元素的核心概念。在当前的研究中,我们采用了一种更基本的方法来模拟听觉注意;提供了对跨越音高、强度和音色的听觉显著性的空间的首次考察;并阐明了这些特征之间的复杂相互作用。受心理声学结果的启发,我们开发了一种听觉显著性的计算模型,实现了一种新颖的注意力框架,该框架由假设在听觉通路中发生的过程指导。具体来说,该模型检验了这样一种假设,即感知跟踪声音事件在多维特征空间中的演变,并将任何偏离背景统计数据的情况标记为显著。该模型的预测证实了自下而上的听觉注意与统计推断之间的关系,并为预测编码作为声学场景中显著性检测机制的潜在作用提供了依据。