Suppr超能文献

基因关联研究综合工具包:通过基因图谱对结构化关联进行统计和可视化分析

GWAS in a box: statistical and visual analytics of structured associations via GenAMap.

作者信息

Xing Eric P, Curtis Ross E, Schoenherr Georg, Lee Seunghak, Yin Junming, Puniyani Kriti, Wu Wei, Kinnaird Peter

机构信息

Machine Learning Department, Carnegie Mellon University, Pittsburgh, Pennsylvania, United States of America.

Joint Carnegie Mellon - University of Pittsburgh PhD Program in Computational Biology, Pittsburgh, Pennsylvania, United States of America; Lane Center for Computational Biology, Carnegie Mellon University, Pittsburgh, Pennsylvania, United States of America.

出版信息

PLoS One. 2014 Jun 6;9(6):e97524. doi: 10.1371/journal.pone.0097524. eCollection 2014.

Abstract

With the continuous improvement in genotyping and molecular phenotyping technology and the decreasing typing cost, it is expected that in a few years, more and more clinical studies of complex diseases will recruit thousands of individuals for pan-omic genetic association analyses. Hence, there is a great need for algorithms and software tools that could scale up to the whole omic level, integrate different omic data, leverage rich structure information, and be easily accessible to non-technical users. We present GenAMap, an interactive analytics software platform that 1) automates the execution of principled machine learning methods that detect genome- and phenome-wide associations among genotypes, gene expression data, and clinical or other macroscopic traits, and 2) provides new visualization tools specifically designed to aid in the exploration of association mapping results. Algorithmically, GenAMap is based on a new paradigm for GWAS and PheWAS analysis, termed structured association mapping, which leverages various structures in the omic data. We demonstrate the function of GenAMap via a case study of the Brem and Kruglyak yeast dataset, and then apply it on a comprehensive eQTL analysis of the NIH heterogeneous stock mice dataset and report some interesting findings. GenAMap is available from http://sailing.cs.cmu.edu/genamap.

摘要

随着基因分型和分子表型分析技术的不断进步以及分型成本的降低,预计在未来几年,越来越多的复杂疾病临床研究将招募数千名个体进行全基因组关联分析。因此,迫切需要能够扩展到全组学水平、整合不同组学数据、利用丰富结构信息且非技术用户易于使用的算法和软件工具。我们展示了GenAMap,这是一个交互式分析软件平台,1)自动执行有原则的机器学习方法,以检测基因型、基因表达数据与临床或其他宏观特征之间的全基因组和全表型关联,2)提供专门设计的新可视化工具,以帮助探索关联映射结果。在算法上,GenAMap基于一种用于全基因组关联研究(GWAS)和全表型组关联研究(PheWAS)分析的新范式,称为结构化关联映射,它利用了组学数据中的各种结构。我们通过对Brem和Kruglyak酵母数据集的案例研究展示了GenAMap的功能,然后将其应用于对美国国立卫生研究院(NIH)异质种群小鼠数据集的全面表达数量性状基因座(eQTL)分析,并报告了一些有趣的发现。GenAMap可从http://sailing.cs.cmu.edu/genamap获取。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b02f/4048179/9c879a2c8744/pone.0097524.g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验