Suppr超能文献

组稀疏加法模型

Group Sparse Additive Models.

作者信息

Yin Junming, Chen Xi, Xing Eric P

机构信息

School of Computer Science, Carnegie Mellon University, Pittsburgh, PA 15213, USA.

出版信息

Proc Int Conf Mach Learn. 2012;2012:871-878.

Abstract

We consider the problem of sparse variable selection in nonparametric additive models, with the prior knowledge of the structure among the covariates to encourage those variables within a group to be selected jointly. Previous works either study the group sparsity in the parametric setting (e.g., group lasso), or address the problem in the nonparametric setting without exploiting the structural information (e.g., sparse additive models). In this paper, we present a new method, called group sparse additive models (GroupSpAM), which can handle group sparsity in additive models. We generalize the norm to Hilbert spaces as the sparsity-inducing penalty in GroupSpAM. Moreover, we derive a novel thresholding condition for identifying the functional sparsity at the group level, and propose an efficient block coordinate descent algorithm for constructing the estimate. We demonstrate by simulation that GroupSpAM substantially outperforms the competing methods in terms of support recovery and prediction accuracy in additive models, and also conduct a comparative experiment on a real breast cancer dataset.

摘要

我们考虑非参数加法模型中的稀疏变量选择问题,利用协变量之间的结构先验知识来促使同一组内的变量被联合选择。先前的工作要么研究参数设置下的组稀疏性(例如,组套索),要么在不利用结构信息的非参数设置中解决该问题(例如,稀疏加法模型)。在本文中,我们提出了一种新方法,称为组稀疏加法模型(GroupSpAM),它可以处理加法模型中的组稀疏性。我们将 范数推广到希尔伯特空间,作为GroupSpAM中的稀疏诱导惩罚。此外,我们推导了一个用于识别组水平上功能稀疏性的新颖阈值条件,并提出了一种有效的块坐标下降算法来构建估计值。我们通过模拟证明,在加法模型的支持恢复和预测准确性方面,GroupSpAM显著优于竞争方法,并且还在一个真实的乳腺癌数据集上进行了对比实验。

相似文献

1
Group Sparse Additive Models.组稀疏加法模型
Proc Int Conf Mach Learn. 2012;2012:871-878.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验