Suppr超能文献

对列联表和独立性检验的再探讨:相比于卡方近似法以及费舍尔精确检验,自助法更受青睐。

A revisit to contingency table and tests of independence: bootstrap is preferred to Chi-square approximations as well as Fisher's exact test.

作者信息

Lin Jyh-Jiuan, Chang Ching-Hui, Pal Nabendu

机构信息

a Department of Statistics , Tamkang University , Tamsui , Taipei , Taiwan.

出版信息

J Biopharm Stat. 2015;25(3):438-58. doi: 10.1080/10543406.2014.920851.

Abstract

To test the mutual independence of two qualitative variables (or attributes), it is a common practice to follow the Chi-square tests (Pearson's as well as likelihood ratio test) based on data in the form of a contingency table. However, it should be noted that these popular Chi-square tests are asymptotic in nature and are useful when the cell frequencies are "not too small." In this article, we explore the accuracy of the Chi-square tests through an extensive simulation study and then propose their bootstrap versions that appear to work better than the asymptotic Chi-square tests. The bootstrap tests are useful even for small-cell frequencies as they maintain the nominal level quite accurately. Also, the proposed bootstrap tests are more convenient than the Fisher's exact test which is often criticized for being too conservative. Finally, all test methods are applied to a few real-life datasets for demonstration purposes.

摘要

为了检验两个定性变量(或属性)的相互独立性,通常的做法是基于列联表形式的数据进行卡方检验(皮尔逊卡方检验以及似然比检验)。然而,需要注意的是,这些常用的卡方检验本质上是渐近的,当单元格频数“不太小”时才有用。在本文中,我们通过广泛的模拟研究探索了卡方检验的准确性,然后提出了它们的自助法版本,这些自助法版本似乎比渐近卡方检验效果更好。自助法检验即使对于小单元格频数也很有用,因为它们能相当准确地保持名义水平。此外,所提出的自助法检验比费舍尔精确检验更方便,费舍尔精确检验常因过于保守而受到批评。最后,为了演示目的,将所有检验方法应用于一些实际数据集。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验