Research Unit Analytical BioGeoChemistry, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany.
Research Unit Microbe-Plant Interactions, Research Group Molecular Microbial Ecology, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany.
ISME J. 2014 Dec;8(12):2380-96. doi: 10.1038/ismej.2014.79. Epub 2014 Jun 6.
A combinatory approach using metabolomics and gut microbiome analysis techniques was performed to unravel the nature and specificity of metabolic profiles related to gut ecology in obesity. This study focused on gut and liver metabolomics of two different mouse strains, the C57BL/6J (C57J) and the C57BL/6N (C57N) fed with high-fat diet (HFD) for 3 weeks, causing diet-induced obesity in C57N, but not in C57J mice. Furthermore, a 16S-ribosomal RNA comparative sequence analysis using 454 pyrosequencing detected significant differences between the microbiome of the two strains on phylum level for Firmicutes, Deferribacteres and Proteobacteria that propose an essential role of the microbiome in obesity susceptibility. Gut microbial and liver metabolomics were followed by a combinatory approach using Fourier transform ion cyclotron resonance mass spectrometry (FT-ICR-MS) and ultra performance liquid chromatography time of tlight MS/MS with subsequent multivariate statistical analysis, revealing distinctive host and microbial metabolome patterns between the C57J and the C57N strain. Many taurine-conjugated bile acids (TBAs) were significantly elevated in the cecum and decreased in liver samples from the C57J phenotype likely displaying different energy utilization behavior by the bacterial community and the host. Furthermore, several metabolite groups could specifically be associated with the C57N phenotype involving fatty acids, eicosanoids and urobilinoids. The mass differences based metabolite network approach enabled to extend the range of known metabolites to important bile acids (BAs) and novel taurine conjugates specific for both strains. In summary, our study showed clear alterations of the metabolome in the gastrointestinal tract and liver within a HFD-induced obesity mouse model in relation to the host-microbial nutritional adaptation.
采用代谢组学和肠道微生物组分析技术的组合方法,揭示了与肥胖相关的肠道生态学相关代谢特征的性质和特异性。本研究专注于两种不同小鼠品系(C57BL/6J(C57J)和 C57BL/6N(C57N))的肠道和肝脏代谢组学,这些小鼠用高脂肪饮食(HFD)喂养 3 周,导致 C57N 发生饮食诱导的肥胖,但 C57J 小鼠没有。此外,使用 454 焦磷酸测序的 16S-核糖体 RNA 比较序列分析在门水平上检测到两种菌株之间微生物组的显著差异,厚壁菌门、脱硫菌门和变形菌门的微生物组提出了微生物组在肥胖易感性中的重要作用。肠道微生物组和肝脏代谢组学随后采用傅立叶变换离子回旋共振质谱(FT-ICR-MS)和超高效液相色谱时间飞行 MS/MS 的组合方法进行,随后进行多元统计分析,揭示了 C57J 和 C57N 菌株之间独特的宿主和微生物代谢组模式。许多牛磺酸结合胆汁酸(TBAs)在盲肠中显著升高,在 C57J 表型的肝脏样本中降低,这可能显示出细菌群落和宿主之间不同的能量利用行为。此外,有几个代谢物组可以与 C57N 表型特异性相关,涉及脂肪酸、类花生酸和尿胆素原。基于质量差异的代谢物网络方法使我们能够将已知代谢物的范围扩展到重要的胆汁酸(BAs)和两种菌株特有的新型牛磺酸缀合物。总之,我们的研究表明,在高脂肪饮食诱导的肥胖小鼠模型中,胃肠道和肝脏的代谢组发生了明显的变化,与宿主-微生物的营养适应有关。