Institut of Developmental and Molecular Biology of Plants, Plant Molecular Physiology and Biotechnology Group, Heinrich-Heine-Universität, Universitätsstraße 1, 40225 Düsseldorf, Germany Botany Department, Faculty of Science, Tanta University, 31527, Tanta, Egypt.
Institut of Developmental and Molecular Biology of Plants, Plant Molecular Physiology and Biotechnology Group, Heinrich-Heine-Universität, Universitätsstraße 1, 40225 Düsseldorf, Germany.
Mol Plant. 2014 Jul;7(7):1191-210. doi: 10.1093/mp/ssu070. Epub 2014 Jun 7.
Hydrogen peroxide (H2O2) operates as a signaling molecule in eukaryotes, but the specificity of its signaling capacities remains largely unrevealed. Here, we analyzed whether a moderate production of H2O2 from two different plant cellular compartments has divergent effects on the plant transcriptome. Arabidopsis thaliana overexpressing glycolate oxidase in the chloroplast (Fahnenstich et al., 2008; Balazadeh et al., 2012) and plants deficient in peroxisomal catalase (Queval et al., 2007; Inzé et al., 2012) were grown under non-photorespiratory conditions and then transferred to photorespiratory conditions to foster the production of H2O2 in both organelles. We show that H2O2 originating in a specific organelle induces two types of responses: one that integrates signals independently from the subcellular site of H2O2 production and another that is dependent on the H2O2 production site. H2O2 produced in peroxisomes induces transcripts involved in protein repair responses, while H2O2 produced in chloroplasts induces early signaling responses, including transcription factors and biosynthetic genes involved in production of secondary signaling messengers. There is a significant bias towards the induction of genes involved in responses to wounding and pathogen attack by chloroplastic-produced H2O2, including indolic glucosinolates-, camalexin-, and stigmasterol-biosynthetic genes. These transcriptional responses were accompanied by the accumulation of 4-methoxy-indol-3-ylmethyl glucosinolate and stigmasterol.
过氧化氢 (H2O2) 在真核生物中作为信号分子发挥作用,但它的信号转导能力的特异性在很大程度上仍未被揭示。在这里,我们分析了来自两个不同植物细胞区室的适度 H2O2 产生是否对植物转录组有不同的影响。拟南芥中超表达叶绿体内的乙醇酸氧化酶(Fahnenstich 等人,2008 年;Balazadeh 等人,2012 年)和过氧化物酶体过氧化氢酶缺陷的植物(Queval 等人,2007 年;Inzé 等人,2012 年)在非光呼吸条件下生长,然后转移到光呼吸条件下,以促进两个细胞器中 H2O2 的产生。我们表明,来自特定细胞器的 H2O2 诱导两种类型的反应:一种是独立于 H2O2 产生的亚细胞部位整合信号的反应,另一种是依赖于 H2O2 产生部位的反应。过氧化物酶体中产生的 H2O2 诱导参与蛋白质修复反应的转录物,而叶绿体中产生的 H2O2 诱导早期信号反应,包括参与次生信号信使产生的转录因子和生物合成基因。由叶绿体产生的 H2O2 对与创伤和病原体攻击相关的基因的诱导具有显著的偏向性,包括吲哚葡萄糖苷、大麻素和甾醇生物合成基因。这些转录反应伴随着 4-甲氧基-吲哚-3-基甲基葡萄糖苷和甾醇的积累。