文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

用于增强缺氧肿瘤光动力治疗的类囊体。

Thylakoids for enhanced photodynamic therapy in hypoxic tumours.

作者信息

Yin Tong, Liu Jingyu, Wu Yue, Peng Xiaobo, Hao Zhibin, Zhang Jingxi, Zhan Xianbao

机构信息

Department of Oncology, Changhai Hospital, Naval Medical University, Shanghai, China.

出版信息

Sci Technol Adv Mater. 2025 Jul 25;26(1):2537000. doi: 10.1080/14686996.2025.2537000. eCollection 2025.


DOI:10.1080/14686996.2025.2537000
PMID:40786231
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC12333001/
Abstract

Current tumor therapies face significant limitations such as hypoxic microenvironments, systemic toxicity, and immunosuppression. Thylakoid-based nanomaterials strategically integrate the structural-functional properties of natural biological components with the versatility of nanotechnology. These biomaterials have garnered substantial scientific interest due to their promising therapeutic potential in oncology. Thylakoids perform essential biological functions including solar energy absorption, photolytic oxygen generation, and operation of photosynthetic electron transport chains. Harnessing thylakoid-specific photochemical properties through nanoscale hybridization offers an innovative paradigm for developing multifunctional platforms in oncotherapy. This review summarizes current challenges in tumor therapy and the advantages of thylakoid-based nanomaterials in addressing these limitations. We further examine recent advances in the engineering design of thylakoid-based nanomaterials and their therapeutic applications. Finally, we discuss existing challenges and future prospects in this field.

摘要

当前的肿瘤治疗面临着诸如缺氧微环境、全身毒性和免疫抑制等重大限制。基于类囊体的纳米材料将天然生物成分的结构功能特性与纳米技术的多功能性进行了战略性整合。由于这些生物材料在肿瘤学中具有广阔的治疗潜力,因此已引起了科学界的广泛关注。类囊体执行着重要的生物学功能,包括太阳能吸收、光解产氧以及光合电子传递链的运行。通过纳米级杂交利用类囊体特有的光化学性质,为开发肿瘤治疗中的多功能平台提供了一种创新模式。本综述总结了肿瘤治疗中的当前挑战以及基于类囊体的纳米材料在克服这些限制方面的优势。我们进一步研究了基于类囊体的纳米材料的工程设计及其治疗应用的最新进展。最后,我们讨论了该领域现有的挑战和未来前景。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3741/12333001/4a6c3505e86b/TSTA_A_2537000_F0011_OC.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3741/12333001/bd0afb037bed/TSTA_A_2537000_UF0001_OC.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3741/12333001/5656bf689400/TSTA_A_2537000_F0001_OC.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3741/12333001/c2b9a41084e7/TSTA_A_2537000_F0002_OC.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3741/12333001/3f01e5df4b7b/TSTA_A_2537000_F0003_OC.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3741/12333001/53d53edb79d9/TSTA_A_2537000_F0004_OC.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3741/12333001/fff4a0e33139/TSTA_A_2537000_F0005_OC.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3741/12333001/6fc57cc958bc/TSTA_A_2537000_F0006_OC.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3741/12333001/3f8a71729ac4/TSTA_A_2537000_F0007_OC.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3741/12333001/04de9f5c585a/TSTA_A_2537000_F0008_OC.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3741/12333001/d4710b13abb8/TSTA_A_2537000_F0009_OC.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3741/12333001/003590132ea2/TSTA_A_2537000_F0010_OC.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3741/12333001/4a6c3505e86b/TSTA_A_2537000_F0011_OC.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3741/12333001/bd0afb037bed/TSTA_A_2537000_UF0001_OC.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3741/12333001/5656bf689400/TSTA_A_2537000_F0001_OC.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3741/12333001/c2b9a41084e7/TSTA_A_2537000_F0002_OC.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3741/12333001/3f01e5df4b7b/TSTA_A_2537000_F0003_OC.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3741/12333001/53d53edb79d9/TSTA_A_2537000_F0004_OC.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3741/12333001/fff4a0e33139/TSTA_A_2537000_F0005_OC.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3741/12333001/6fc57cc958bc/TSTA_A_2537000_F0006_OC.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3741/12333001/3f8a71729ac4/TSTA_A_2537000_F0007_OC.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3741/12333001/04de9f5c585a/TSTA_A_2537000_F0008_OC.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3741/12333001/d4710b13abb8/TSTA_A_2537000_F0009_OC.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3741/12333001/003590132ea2/TSTA_A_2537000_F0010_OC.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3741/12333001/4a6c3505e86b/TSTA_A_2537000_F0011_OC.jpg

相似文献

[1]
Thylakoids for enhanced photodynamic therapy in hypoxic tumours.

Sci Technol Adv Mater. 2025-7-25

[2]
Innovative approaches for cancer treatment: graphene quantum dots for photodynamic and photothermal therapies.

J Mater Chem B. 2024-5-8

[3]
Harnessing piezoelectric materials for tumor therapy: Current advances and outlook.

Acta Biomater. 2025-7-1

[4]
Biomimetic Nanomaterials Based on Peptide In Situ Self-Assembly for Immunotherapy Applications.

Wiley Interdiscip Rev Nanomed Nanobiotechnol. 2025

[5]
Management of urinary stones by experts in stone disease (ESD 2025).

Arch Ital Urol Androl. 2025-6-30

[6]
Near-infrared II nanomaterials for hypoxic TME diagnosis and therapy.

Nanomedicine (Lond). 2025-7

[7]
Harnessing nanotechnology for stem-cell therapies: revolutionizing neurodegenerative disorder treatments - a state-of-the-art update.

Front Pharmacol. 2025-7-23

[8]
Harnessing carbon nanomaterials for reactive oxygen species regulation: Insights into generation, scavenging, and sensing.

Adv Drug Deliv Rev. 2025-9

[9]
Immunomodulatory nanoparticles activate cytotoxic T cells for enhancement of the effect of cancer immunotherapy.

Nanoscale. 2024-10-3

[10]
Nanomaterial-assisted pancreatic cancer theranostics.

Regen Biomater. 2025-6-11

本文引用的文献

[1]
Nanobodies targeting EGFR provide insight into conformations stabilized by glioblastoma mutations.

J Biol Chem. 2025-7

[2]
Targeting the tumor microenvironment with biomaterials for enhanced immunotherapeutic efficacy.

J Nanobiotechnology. 2024-11-27

[3]
Deformable nanocarriers for enhanced drug delivery and cancer therapy.

Exploration (Beijing). 2024-3-15

[4]
Ultrasound-Activatable Vaccine for Enhanced Antigen Self- and Cross-Presentation to Overcome Cancer Immunotherapy Resistance.

ACS Nano. 2024-7-25

[5]
Surface Engineering Enhances Vanadium Carbide MXene-Based Nanoplatform Triggered by NIR-II for Cancer Theranostics.

Small. 2024-11

[6]
Sensitivity and responses of chloroplasts to salt stress in plants.

Front Plant Sci. 2024-4-17

[7]
Thylakoid protein FPB1 synergistically cooperates with PAM68 to promote CP47 biogenesis and Photosystem II assembly.

Nat Commun. 2024-4-10

[8]
Cell-derived nanomaterials for biomedical applications.

Sci Technol Adv Mater. 2024-2-7

[9]
Cancer-Thylakoid Hybrid Membrane Camouflaged Thulium Oxide Nanoparticles with Oxygen Self-Supply Capability for Tumor-Homing Phototherapy.

Adv Healthc Mater. 2024-4

[10]
Spatial redundancy transformer for self-supervised fluorescence image denoising.

Nat Comput Sci. 2023-12

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索