Monakhova Yulia B, Godelmann Rolf, Hermann Armin, Kuballa Thomas, Cannet Claire, Schäfer Hartmut, Spraul Manfred, Rutledge Douglas N
Chemisches und Veterinäruntersuchungsamt (CVUA) Karlsruhe, Weissenburger Strasse 3, Karlsruhe 76187, Germany; Bruker Biospin GmbH, Silberstreifen, Rheinstetten 76287, Germany; Department of Chemistry, Saratov State University, Astrakhanskaya Street 83, Saratov 410012, Russia.
Chemisches und Veterinäruntersuchungsamt (CVUA) Karlsruhe, Weissenburger Strasse 3, Karlsruhe 76187, Germany.
Anal Chim Acta. 2014 Jun 23;833:29-39. doi: 10.1016/j.aca.2014.05.005. Epub 2014 May 13.
It is known that (1)H NMR spectroscopy represents a good tool for predicting the grape variety, the geographical origin, and the year of vintage of wine. In the present study we have shown that classification models can be improved when (1)H NMR profiles are fused with stable isotope (SNIF-NMR, (18)O, (13)C) data. Variable selection based on clustering of latent variables was performed on (1)H NMR data. Afterwards, the combined data of 718 wine samples from Germany were analyzed using linear discriminant analysis (LDA), partial least squares-discriminant analysis (PLS-DA), factorial discriminant analysis (FDA) and independent components analysis (ICA). Moreover, several specialized multiblock methods (common components and specific weights analysis (ComDim), consensus PCA and consensus PLS-DA) were applied to the data. The best improvement in comparison with (1)H NMR data was obtained for prediction of the geographical origin (up to 100% for the fused data, whereas stable isotope data resulted only in 60-70% correct prediction and (1)H NMR data alone in 82-89% respectively). Certain enhancement was obtained also for the year of vintage (from 88 to 97% for (1)H NMR to 99% for the fused data), whereas in case of grape varieties improved models were not obtained. The combination of (1)H NMR data with stable isotope data improves efficiency of classification models for geographical origin and vintage of wine and can be potentially used for other food products as well.
已知氢核磁共振光谱法是预测葡萄酒葡萄品种、地理来源和年份的良好工具。在本研究中,我们表明,当氢核磁共振谱与稳定同位素(SNIF-NMR、氧-18、碳-13)数据融合时,分类模型可以得到改进。对氢核磁共振数据进行基于潜在变量聚类的变量选择。之后,使用线性判别分析(LDA)、偏最小二乘判别分析(PLS-DA)、因子判别分析(FDA)和独立成分分析(ICA)对来自德国的718个葡萄酒样品的合并数据进行分析。此外,还对数据应用了几种专门的多块方法(共同成分和特定权重分析(ComDim)、共识主成分分析和共识偏最小二乘判别分析)。与氢核磁共振数据相比,在地理来源预测方面获得了最佳改进(融合数据的预测准确率高达100%,而稳定同位素数据的正确预测率仅为60-70%,单独的氢核磁共振数据分别为82-89%)。年份预测也有一定提高(氢核磁共振数据从88%提高到97%,融合数据提高到99%),而在葡萄品种方面未获得改进的模型。氢核磁共振数据与稳定同位素数据的结合提高了葡萄酒地理来源和年份分类模型的效率,也有可能用于其他食品。