Suppr超能文献

最简单动物的衰老与长寿以及对永生的追求。

Aging and longevity in the simplest animals and the quest for immortality.

作者信息

Petralia Ronald S, Mattson Mark P, Yao Pamela J

机构信息

Advanced Imaging Core, NIDCD/NIH, Bethesda, MD 20892, United States.

Laboratory of Neurosciences, National Institute on Aging Intramural Research Program, Baltimore, MD 21224, United States.

出版信息

Ageing Res Rev. 2014 Jul;16:66-82. doi: 10.1016/j.arr.2014.05.003. Epub 2014 Jun 5.

Abstract

Here we review the examples of great longevity and potential immortality in the earliest animal types and contrast and compare these to humans and other higher animals. We start by discussing aging in single-celled organisms such as yeast and ciliates, and the idea of the immortal cell clone. Then we describe how these cell clones could become organized into colonies of different cell types that lead to multicellular animal life. We survey aging and longevity in all of the basal metazoan groups including ctenophores (comb jellies), sponges, placozoans, cnidarians (hydras, jellyfish, corals and sea anemones) and myxozoans. Then we move to the simplest bilaterian animals (with a head, three body cell layers, and bilateral symmetry), the two phyla of flatworms. A key determinant of longevity and immortality in most of these simple animals is the large numbers of pluripotent stem cells that underlie the remarkable abilities of these animals to regenerate and rejuvenate themselves. Finally, we discuss briefly the evolution of the higher bilaterians and how longevity was reduced and immortality lost due to attainment of greater body complexity and cell cycle strategies that protect these complex organisms from developing tumors. We also briefly consider how the evolution of multiple aging-related mechanisms/pathways hinders our ability to understand and modify the aging process in higher organisms.

摘要

在此,我们回顾最早的动物类型中长寿和潜在永生的例子,并将其与人类及其他高等动物进行对比和比较。我们首先讨论单细胞生物(如酵母和纤毛虫)的衰老以及永生细胞克隆的概念。然后我们描述这些细胞克隆如何组织成不同细胞类型的群体,从而形成多细胞动物生命。我们考察所有基础后生动物类群中的衰老和长寿情况,包括栉水母、海绵动物、扁盘动物、刺胞动物(水螅、水母、珊瑚和海葵)以及粘孢子虫。接着我们转向最简单的两侧对称动物(具有头部、三个体细胞层和两侧对称),即扁形动物门的两个纲。在大多数这些简单动物中,长寿和永生的一个关键决定因素是大量的多能干细胞,这些干细胞是这些动物具有显著再生和恢复活力能力的基础。最后,我们简要讨论高等两侧对称动物的进化,以及由于身体复杂性增加和细胞周期策略(保护这些复杂生物体不发生肿瘤)导致长寿减少和永生丧失的情况。我们还简要考虑多种与衰老相关的机制/途径的进化如何阻碍我们理解和改变高等生物衰老过程的能力。

相似文献

2
An even "newer" animal phylogeny.一个甚至“更新的”动物系统发育。
Bioessays. 2008 Nov;30(11-12):1043-7. doi: 10.1002/bies.20842.
6
Cnidarian Zic Genes.刺胞动物 Zic 基因。
Adv Exp Med Biol. 2018;1046:27-39. doi: 10.1007/978-981-10-7311-3_2.
7
Learning in Cnidaria: A systematic review.刺胞动物的学习行为:系统评价。
Learn Behav. 2021 Jun;49(2):175-189. doi: 10.3758/s13420-020-00452-3. Epub 2021 Jan 13.
9
Mortality patterns suggest lack of senescence in hydra.死亡率模式表明水螅不存在衰老现象。
Exp Gerontol. 1998 May;33(3):217-25. doi: 10.1016/s0531-5565(97)00113-7.
10
Early evolution of symmetry and polarity in metazoan body plans.后生动物身体结构中对称性和极性的早期演化。
C R Biol. 2009 Feb-Mar;332(2-3):184-209. doi: 10.1016/j.crvi.2008.07.009. Epub 2008 Nov 28.

引用本文的文献

5
DNA methylation extends lifespan in the bumblebee .DNA 甲基化延长了蜜蜂的寿命。
Proc Biol Sci. 2023 Dec 6;290(2012):20232093. doi: 10.1098/rspb.2023.2093.
8
Sirtuin Evolution at the Dawn of Animal Life.Sirtuin 进化在动物生命的黎明。
Mol Biol Evol. 2022 Sep 1;39(9). doi: 10.1093/molbev/msac192.

本文引用的文献

2
A quiescent path to plant longevity.植物长寿的休眠途径。
Trends Cell Biol. 2014 Aug;24(8):443-8. doi: 10.1016/j.tcb.2014.03.004. Epub 2014 Apr 3.
5
Induction of pluripotency by defined factors.通过定义因子诱导多能性。
Proc Jpn Acad Ser B Phys Biol Sci. 2014;90(3):83-96. doi: 10.2183/pjab.90.83.
9
Cell death: a program to regenerate.细胞死亡:一种再生的程序。
Curr Top Dev Biol. 2014;108:121-51. doi: 10.1016/B978-0-12-391498-9.00002-4.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验