Dudakovic Amel, Camilleri Emily T, Lewallen Eric A, McGee-Lawrence Meghan E, Riester Scott M, Kakar Sanjeev, Montecino Martin, Stein Gary S, Ryoo Hyun-Mo, Dietz Allan B, Westendorf Jennifer J, van Wijnen Andre J
Department of Orthopedic Surgery, Mayo Clinic, Rochester, Minnesota.
J Cell Physiol. 2015 Jan;230(1):52-62. doi: 10.1002/jcp.24680.
Human adipose-derived mesenchymal stromal cells (AMSCs) grown in platelet lysate are promising agents for therapeutic tissue regeneration. Here, we investigated whether manipulation of epigenetic events by the clinically relevant histone deacetylase inhibitor suberoylanilide hydroxamic acid (SAHA) alters differentiation of AMSCs. The multipotency of AMSCs was validated by their ability to differentiate into osteogenic, chondrogenic, and adipogenic lineages. High-throughput RNA sequencing and RT-qPCR established that human histone deacetylases (HDAC1 to HDAC11, and SIRT1 to SIRT7) are differentially expressed in AMSCs. SAHA induces hyper-acetylation of histone H3 and H4, stimulates protein expression of the HDAC-responsive gene SLC9A3R1/NHERF1 and modulates the AKT/FOXO1 pathway. Biologically, SAHA interferes with osteogenic, chondrogenic and adipogenic lineage commitment of multipotent AMSCs. Mechanistically, SAHA-induced loss of differentiation potential of uncommitted AMSCs correlates with multiple changes in the expression of principal transcription factors that control mesenchymal or pluripotent states. We propose that SAHA destabilizes the multi-potent epigenetic state of uncommitted human AMSCs by hyper-acetylation and perturbation of key transcription factor pathways. Furthermore, AMSCs grown in platelet lysate may provide a useful biological model for screening of new HDAC inhibitors that control the biological fate of human mesenchymal stromal cells.
在血小板裂解物中培养的人脂肪来源间充质基质细胞(AMSCs)是用于治疗性组织再生的有前景的细胞。在此,我们研究了临床上相关的组蛋白脱乙酰酶抑制剂辛二酰苯胺异羟肟酸(SAHA)对表观遗传事件的调控是否会改变AMSCs的分化。通过其向成骨、软骨生成和脂肪生成谱系分化的能力验证了AMSCs的多能性。高通量RNA测序和RT-qPCR确定人组蛋白脱乙酰酶(HDAC1至HDAC11以及SIRT1至SIRT7)在AMSCs中差异表达。SAHA诱导组蛋白H3和H4的超乙酰化,刺激HDAC反应性基因SLC9A3R1/NHERF1的蛋白表达并调节AKT/FOXO1途径。从生物学角度来看,SAHA干扰了多能AMSCs的成骨、软骨生成和脂肪生成谱系定向分化。从机制上讲,SAHA诱导的未定向AMSCs分化潜能丧失与控制间充质或多能状态的主要转录因子表达的多种变化相关。我们提出SAHA通过超乙酰化和关键转录因子途径的扰动破坏了未定向人AMSCs的多能表观遗传状态。此外,在血小板裂解物中培养的AMSCs可能为筛选控制人间充质基质细胞生物学命运的新型HDAC抑制剂提供有用的生物学模型。