Department of Orthopedic Surgery, Mayo Clinic, Rochester, Minnesota, USA.
Department of Biological Sciences, Hampton University, Hampton, Virginia, USA.
Tissue Eng Part A. 2021 Dec;27(23-24):1503-1516. doi: 10.1089/ten.TEA.2020.0369. Epub 2021 Aug 16.
Metal orthopedic implants are largely biocompatible and generally achieve long-term structural fixation. However, some orthopedic implants may loosen over time even in the absence of infection. fixation failure is multifactorial, but the fundamental biological defect is cellular dysfunction at the host-implant interface. Strategies to reduce the risk of short- and long-term loosening include surface modifications, implant metal alloy type, and adjuvant substances such as polymethylmethacrylate cement. Surface modifications (e.g., increased surface rugosity) can increase osseointegration and biological ingrowth of orthopedic implants. However, the localized responses of cells to implant surface modifications need to be better characterized. As an model for investigating cellular responses to metallic orthopedic implants, we cultured mesenchymal stromal/stem cells on clinical-grade titanium disks (Ti6Al4V) that differed in surface roughness as high (porous structured), medium (grit blasted), and low (bead blasted). Topological characterization of clinically relevant titanium (Ti) materials combined with differential mRNA expression analyses (RNA-seq and real-time quantitative polymerase chain reaction) revealed alterations to the biological phenotype of cells cultured on titanium structures that favor early extracellular matrix production and observable responses to oxidative stress and heavy metal stress. These results provide a descriptive model for the interpretation of cellular responses at the interface between native host tissues and three-dimensionally printed modular orthopedic implants, and will guide future studies aimed at increasing the long-term retention of such materials after total joint arthroplasty. Impact statement Using an model of implant-to-cell interactions by culturing mesenchymal stromal cells (MSCs) on clinically relevant titanium materials of varying topological roughness, we identified mRNA expression patterns consistent with early extracellular matrix (ECM) production and responses to oxidative/heavy metal stress. Implants with high surface roughness may delay the differentiation and ECM formation of MSCs and alter the expression of genes sensitive to reactive oxygen species and protein kinases. In combination with ongoing animal studies, these results will guide future studies aimed at increasing the long-term retention of widely used titanium materials after total joint arthroplasty.
金属骨科植入物在很大程度上是生物相容的,通常可以实现长期的结构固定。然而,即使没有感染,一些骨科植入物也可能随着时间的推移而松动。固定失败是多因素的,但根本的生物学缺陷是宿主-植入物界面的细胞功能障碍。降低短期和长期松动风险的策略包括表面改性、植入金属合金类型和辅助物质如聚甲基丙烯酸甲酯水泥。表面改性(例如,增加表面粗糙度)可以增加骨科植入物的骨整合和生物内生长。然而,需要更好地描述细胞对植入物表面改性的局部反应。作为研究细胞对金属骨科植入物反应的模型,我们在临床级钛盘(Ti6Al4V)上培养间充质基质/干细胞,这些钛盘在表面粗糙度上有高(多孔结构)、中(喷砂)和低(珠状喷砂)之分。临床相关钛(Ti)材料的拓扑特征结合差异 mRNA 表达分析(RNA-seq 和实时定量聚合酶链反应)表明,培养在钛结构上的细胞的生物学表型发生了改变,有利于早期细胞外基质的产生,并对氧化应激和重金属应激有可观察到的反应。这些结果为解释天然宿主组织与三维打印模块化骨科植入物界面的细胞反应提供了一个描述性模型,并将指导未来旨在增加全关节置换术后这些材料长期保留的研究。影响评估 通过在临床上相关的具有不同拓扑粗糙度的钛材料上培养间充质基质细胞(MSCs)来研究植入物与细胞相互作用的模型,我们确定了与早期细胞外基质(ECM)产生和对氧化/重金属应激反应一致的 mRNA 表达模式。具有高表面粗糙度的植入物可能会延迟 MSC 的分化和 ECM 的形成,并改变对活性氧和蛋白激酶敏感的基因的表达。结合正在进行的动物研究,这些结果将指导未来旨在增加全关节置换术后广泛使用的钛材料长期保留的研究。