School of Life Sciences, UNIST, Ulsan, Republic of Korea.
BMC Genomics. 2014 Jun 9;15(1):450. doi: 10.1186/1471-2164-15-450.
Genome-wide expression profiles reflect the transcriptional networks specific to the given cell context. However, most statistical models try to estimate the average connectivity of the networks from a collection of gene expression data, and are unable to characterize the context-specific transcriptional regulations. We propose an approach for mining context-specific transcription networks from a large collection of gene expression fold-change profiles and composite gene-set information.
Using a composite gene-set analysis method, we combine the information of transcription factor binding sites, Gene Ontology or pathway gene sets and gene expression fold-change profiles for a variety of cell conditions. We then collected all the significant patterns and constructed a database of context-specific transcription networks for human (REGNET). As a result, context-specific roles of transcription factors as well as their functional targets are readily explored. To validate the approach, nine predicted targets of E2F1 in HeLa cells were tested using chromatin immunoprecipitation assay. Among them, five (Gadd45b, Dusp6, Mll5, Bmp2 and E2f3) were successfully bound by E2F1. c-JUN and the EMT transcription networks were also validated from literature.
REGNET is a useful tool for exploring the ternary relationships among the transcription factors, their functional targets and the corresponding cell conditions. It is able to provide useful clues for novel cell-specific transcriptional regulations. The REGNET database is available at http://mgrc.kribb.re.kr/regnet.
全基因组表达谱反映了特定细胞环境下的转录网络。然而,大多数统计模型试图从一组基因表达数据中估计网络的平均连通性,而无法描述特定于上下文的转录调控。我们提出了一种从大量基因表达倍数变化谱和复合基因集信息中挖掘特定于上下文的转录网络的方法。
我们使用复合基因集分析方法,结合转录因子结合位点、基因本体论或途径基因集以及各种细胞条件下的基因表达倍数变化谱的信息。然后,我们收集了所有显著的模式,并构建了人类特定于上下文的转录网络数据库(REGNET)。结果,易于探索转录因子的特定于上下文的作用及其功能靶标。为了验证该方法,使用染色质免疫沉淀测定法测试了 HeLa 细胞中 E2F1 的九个预测靶标。其中,五个(Gadd45b、Dusp6、Mll5、Bmp2 和 E2f3)被 E2F1 成功结合。c-JUN 和 EMT 转录网络也从文献中得到了验证。
REGNET 是探索转录因子、其功能靶标和相应细胞条件之间的三元关系的有用工具。它能够为新的细胞特异性转录调控提供有用的线索。REGNET 数据库可在 http://mgrc.kribb.re.kr/regnet 上获得。