Madsen Kristoffer H, Churchill Nathan W, Mørup Morten
Danish Research Centre for Magnetic Resonance, Centre for Functional and Diagnostic Imaging and Research, Copenhagen University Hospital, Hvidovre, Denmark.
Section for Cognitive Systems, Department of Applied Mathematics and Computer Science, Technical University of Denmark, Lyngby, Denmark.
Hum Brain Mapp. 2017 Feb;38(2):882-899. doi: 10.1002/hbm.23425. Epub 2016 Oct 14.
Functional magnetic resonance imaging (fMRI) is increasingly used to characterize functional connectivity between brain regions. Given the vast number of between-voxel interactions in high-dimensional fMRI data, it is an ongoing challenge to detect stable and generalizable functional connectivity in the brain among groups of subjects. Component models can be used to define subspace representations of functional connectivity that are more interpretable. It is, however, unclear which component model provides the optimal representation of functional networks for multi-subject fMRI datasets. A flexible cross-validation approach that assesses the ability of the models to predict voxel-wise covariance in new data, using three different measures of generalization was proposed. This framework is used to compare a range of component models with varying degrees of flexibility in their representation of functional connectivity, evaluated on both simulated and experimental resting-state fMRI data. It was demonstrated that highly flexible subject-specific component subspaces, as well as very constrained average models, are poor predictors of whole-brain functional connectivity, whereas the best-generalizing models account for subject variability within a common spatial subspace. Within this set of models, spatial Independent Component Analysis (sICA) on concatenated data provides more interpretable brain patterns, whereas a consistent-covariance model that accounts for subject-specific network scaling (PARAFAC2) provides greater stability in functional connectivity relationships between components and their spatial representations. The proposed evaluation framework is a promising quantitative approach to evaluating component models, and reveals important differences between subspace models in terms of predictability, robustness, characterization of subject variability, and interpretability of the model parameters. Hum Brain Mapp 38:882-899, 2017. © 2016 Wiley Periodicals, Inc.
功能磁共振成像(fMRI)越来越多地用于表征脑区之间的功能连接。鉴于高维fMRI数据中体素间相互作用的数量巨大,在多组受试者中检测大脑中稳定且可推广的功能连接是一项持续的挑战。成分模型可用于定义更具可解释性的功能连接子空间表示。然而,尚不清楚哪种成分模型能为多受试者fMRI数据集提供功能网络的最佳表示。本文提出了一种灵活的交叉验证方法,该方法使用三种不同的泛化度量来评估模型预测新数据中体素级协方差的能力。这个框架用于比较一系列在功能连接表示上具有不同灵活程度的成分模型,这些模型在模拟和实验静息态fMRI数据上进行评估。结果表明,高度灵活的个体特异性成分子空间以及非常受限的平均模型,都不是全脑功能连接的良好预测指标,而泛化能力最佳的模型在一个共同的空间子空间内考虑了个体变异性。在这组模型中,对拼接数据进行空间独立成分分析(sICA)可提供更具可解释性的脑模式,而考虑个体特异性网络缩放的一致性协方差模型(PARAFAC2)在成分与其空间表示之间的功能连接关系方面提供了更大的稳定性。所提出的评估框架是一种很有前景的定量评估成分模型的方法,并且揭示了子空间模型在可预测性、稳健性、个体变异性表征以及模型参数的可解释性方面的重要差异。《人类大脑图谱》38:882 - 899,2017年。© 2016威利期刊公司。