Suppr超能文献

通过两步加权模块度最大化提高脑区社区结构检测。

Improved brain community structure detection by two-step weighted modularity maximization.

机构信息

School of Artificial Intelligence, Beijing Normal University, Beijing, China.

出版信息

PLoS One. 2023 Dec 8;18(12):e0295428. doi: 10.1371/journal.pone.0295428. eCollection 2023.

Abstract

The human brain can be regarded as a complex network with interacting connections between brain regions. Complex brain network analyses have been widely applied to functional magnetic resonance imaging (fMRI) data and have revealed the existence of community structures in brain networks. The identification of communities may provide insight into understanding the topological functions of brain networks. Among various community detection methods, the modularity maximization (MM) method has the advantages of model conciseness, fast convergence and strong adaptability to large-scale networks and has been extended from single-layer networks to multilayer networks to investigate the community structure changes of brain networks. However, the problems of MM, suffering from instability and failing to detect hierarchical community structure in networks, largely limit the application of MM in the community detection of brain networks. In this study, we proposed the weighted modularity maximization (WMM) method by using the weight matrix to weight the adjacency matrix and improve the performance of MM. Moreover, we further proposed the two-step WMM method to detect the hierarchical community structures of networks by utilizing node attributes. The results of the synthetic networks without node attributes demonstrated that WMM showed better partition accuracy than both MM and robust MM and better stability than MM. The two-step WMM method showed better accuracy of community partitioning than WMM for synthetic networks with node attributes. Moreover, the results of resting state fMRI (rs-fMRI) data showed that two-step WMM had the advantage of detecting the hierarchical communities over WMM and was more insensitive to the density of the rs-fMRI networks than WMM.

摘要

人脑可以被视为一个具有大脑区域之间相互作用连接的复杂网络。复杂脑网络分析已广泛应用于功能磁共振成像(fMRI)数据,并揭示了脑网络中社区结构的存在。社区的识别可以帮助我们理解脑网络的拓扑功能。在各种社区检测方法中,模块化最大化(MM)方法具有模型简洁、快速收敛和对大规模网络强适应性的优点,并已从单层网络扩展到多层网络,以研究脑网络的社区结构变化。然而,MM 存在不稳定性和无法检测网络中的层次社区结构的问题,这在很大程度上限制了 MM 在脑网络社区检测中的应用。在这项研究中,我们通过使用权重矩阵对邻接矩阵进行加权,提出了加权模块化最大化(WMM)方法,从而提高了 MM 的性能。此外,我们进一步提出了两步 WMM 方法,通过利用节点属性来检测网络的层次社区结构。没有节点属性的合成网络的结果表明,WMM 比 MM 和鲁棒 MM 具有更好的划分准确性,并且比 MM 更稳定。具有节点属性的合成网络的两步 WMM 方法比 WMM 具有更好的社区划分准确性。此外,静息态功能磁共振成像(rs-fMRI)数据的结果表明,两步 WMM 比 WMM 具有检测层次社区的优势,并且比 WMM 对 rs-fMRI 网络的密度更不敏感。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7379/10707683/71c9ee1c5b9a/pone.0295428.g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验