Parkin Isobel A P, Koh Chushin, Tang Haibao, Robinson Stephen J, Kagale Sateesh, Clarke Wayne E, Town Chris D, Nixon John, Krishnakumar Vivek, Bidwell Shelby L, Denoeud France, Belcram Harry, Links Matthew G, Just Jérémy, Clarke Carling, Bender Tricia, Huebert Terry, Mason Annaliese S, Pires J Chris, Barker Guy, Moore Jonathan, Walley Peter G, Manoli Sahana, Batley Jacqueline, Edwards David, Nelson Matthew N, Wang Xiyin, Paterson Andrew H, King Graham, Bancroft Ian, Chalhoub Boulos, Sharpe Andrew G
Genome Biol. 2014 Jun 10;15(6):R77. doi: 10.1186/gb-2014-15-6-r77.
Brassica oleracea is a valuable vegetable species that has contributed to human health and nutrition for hundreds of years and comprises multiple distinct cultivar groups with diverse morphological and phytochemical attributes. In addition to this phenotypic wealth, B. oleracea offers unique insights into polyploid evolution, as it results from multiple ancestral polyploidy events and a final Brassiceae-specific triplication event. Further, B. oleracea represents one of the diploid genomes that formed the economically important allopolyploid oilseed, Brassica napus. A deeper understanding of B. oleracea genome architecture provides a foundation for crop improvement strategies throughout the Brassica genus.
We generate an assembly representing 75% of the predicted B. oleracea genome using a hybrid Illumina/Roche 454 approach. Two dense genetic maps are generated to anchor almost 92% of the assembled scaffolds to nine pseudo-chromosomes. Over 50,000 genes are annotated and 40% of the genome predicted to be repetitive, thus contributing to the increased genome size of B. oleracea compared to its close relative B. rapa. A snapshot of both the leaf transcriptome and methylome allows comparisons to be made across the triplicated sub-genomes, which resulted from the most recent Brassiceae-specific polyploidy event.
Differential expression of the triplicated syntelogs and cytosine methylation levels across the sub-genomes suggest residual marks of the genome dominance that led to the current genome architecture. Although cytosine methylation does not correlate with individual gene dominance, the independent methylation patterns of triplicated copies suggest epigenetic mechanisms play a role in the functional diversification of duplicate genes.
甘蓝是一种重要的蔬菜物种,数百年来一直为人类健康和营养做出贡献,它包含多个具有不同形态和植物化学特性的独特栽培品种组。除了这种丰富的表型外,甘蓝还为多倍体进化提供了独特的见解,因为它源于多次祖先多倍体事件和一次最终的十字花科特有的三倍化事件。此外,甘蓝代表了形成经济上重要的异源多倍体油菜(甘蓝型油菜)的二倍体基因组之一。对甘蓝基因组结构的更深入了解为整个芸苔属作物改良策略奠定了基础。
我们使用Illumina/Roche 454混合方法生成了一个代表预测甘蓝基因组75%的组装序列。生成了两个密集的遗传图谱,将几乎92%的组装支架锚定到九条假染色体上。注释了超过50000个基因,预测40%的基因组为重复序列,这导致甘蓝与其近缘种白菜相比基因组大小增加。叶片转录组和甲基化组的快照允许对由最近的十字花科特异多倍体事件产生的三倍化亚基因组进行比较。
三倍化同线基因的差异表达和亚基因组间的胞嘧啶甲基化水平表明了导致当前基因组结构的基因组优势的残留印记。虽然胞嘧啶甲基化与单个基因优势无关,但三倍化拷贝的独立甲基化模式表明表观遗传机制在重复基因的功能多样化中起作用。