Jezewski Andrew J, Larson Joshua J, Wysocki Beata, Davis Paul H, Wysocki Tadeusz
Department of Biology, University of Nebraska at Omaha, Omaha, Nebraska.
Department of Engineering, University of Nebraska-Lincoln, 6001 Dodge St, 200 Peter Kiewit Institute, Omaha, Nebraska 68182-0572;
Biotechnol Bioeng. 2014 Dec;111(12):2454-2465. doi: 10.1002/bit.25310. Epub 2014 Aug 5.
Glucose transport in humans is a vital process which is tightly regulated by the endocrine system. Specifically, the insulin hormone triggers a cascade of intracellular signals in target cells mediating the uptake of glucose. Insulin signaling triggers cellular relocalization of the glucose transporter protein GLUT4 to the cell surface, which is primarily responsible for regulated glucose import. Pathology associated with the disruption of this pathway can lead to metabolic disorders, such as type II diabetes mellitus, characterized by the failure of cells to appropriately uptake glucose from the blood. We describe a novel simulation tool of the insulin intracellular response, incorporating the latest findings regarding As160 and GEF interactions. The simulation tool differs from previous computational approaches which employ algebraic or differential equations; instead, the tool incorporates statistical variations of kinetic constants and initial molecular concentrations which more accurately mimic the intracellular environment. Using this approach, we successfully recapitulate observed in vitro insulin responses, plus the effects of Wortmannin-like inhibition of the pathway. The developed tool provides insight into transient changes in molecule concentrations throughout the insulin signaling pathway, and may be employed to identify or evaluate potentially critical components of this pathway, including those associated with insulin resistance. In the future, this highly tractable platform may be useful for simulating other complex cell signaling pathways. Biotechnol. Bioeng. 2014;111: 2454-2465. © 2014 Wiley Periodicals, Inc.
人体中的葡萄糖转运是一个至关重要的过程,受到内分泌系统的严格调控。具体而言,胰岛素激素会在靶细胞中触发一系列细胞内信号,介导葡萄糖的摄取。胰岛素信号传导会触发葡萄糖转运蛋白GLUT4在细胞内重新定位到细胞表面,这主要负责调节葡萄糖的导入。与该途径破坏相关的病理学可导致代谢紊乱,如II型糖尿病,其特征是细胞无法从血液中适当摄取葡萄糖。我们描述了一种胰岛素细胞内反应的新型模拟工具,纳入了有关As160和GEF相互作用的最新发现。该模拟工具不同于以往采用代数或微分方程的计算方法;相反,该工具纳入了动力学常数和初始分子浓度的统计变化,能更准确地模拟细胞内环境。使用这种方法,我们成功再现了体外观察到的胰岛素反应,以及渥曼青霉素样对该途径的抑制作用。所开发的工具可深入了解胰岛素信号通路中分子浓度的瞬时变化,并可用于识别或评估该途径中潜在的关键成分,包括与胰岛素抵抗相关的成分。未来,这个高度易处理的平台可能有助于模拟其他复杂的细胞信号通路。《生物技术与生物工程》2014年;111: 2454 - 2465。© 2014威利期刊公司